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Abstract 

In this paper, the problem of self-tuning of coupling parameters in multi-agent systems is considered. 

Agent dynamics are described by a discrete-time double integrator with time-varying nonhomogeneous 

input gain. The coupling parameters defining the strength of agents interactions are locally self-tuning 

by each node based on the velocities of its neighbors. The cost function is equal to the square of the 

local error between the agent velocity and the weighted average of the velocities of interacting 

neighbors. So, the proposed algorithm is the normalized gradient algorithm which is minimized the 

square of the local error between the agent velocity and the one step delayed average of the velocities 

of its neighbors. Provided that the underlying graph is strongly connected, it is shown that the sequence 

of the inter-agent coupling parameters generated by the proposed algorithm is convergent. Also, 

assuming the suitable initial condition on coupling parameters, it is proved that the network achieves 

average consensus. In other words, the agent velocities converge toward the average of the initial 

velocities values. Furthermore, the distance among agents converges to a finite limit. Simulation results 

illustrate effectiveness of the proposed method. 

Keywords: Multi-agent system, Unmanned aerial vehicle, Self-tuning consensus, Double integrator 

agent dynamic, Directed graph. 

1- Introduction 

Multi-agent system (MAS) or distributed 

artificial intelligence is an approach in 

which groups of agents work together to 

accomplish a mission or perform a task. The 

importance of such cooperating systems 

arises from their several applications in 

mobile robots, vehicles, unmanned aerial 

vehicles (UAVs), autonomous underwater 

vehicles (AUVs), routers, sensors, 

processors, ships, missiles, aircraft, and 

satellites [1], which are control objects with 

certain coordination ability. Usually, the 

kinds of duties assigned to MASs are those 

that cannot be accomplished by a single 

agent, or they are such that the cost and the 

difficulty of employing a single complex 

agent for performing them are greater than 

using groups of simpler agents [2]. In order 

to perform the assigned missions accurately 

and successfully, the agents have to 

communicate, cooperate and coordinate 

with one another, and engage in bilateral 

negotiations.  

http://jsme.iaukhsh.ac.ir/
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Some of the interesting missions and tasks 

can be performed by using multiple mobile 

robots, such as exploration, surveillance, 

cooperative search, mapping of different 

environments, distributed manipulation, 

and moving large objects [3]. In such 

missions, a group of robots may have 

several advantages over a single robot, 

including improving stability, flexibility, 

and reliability of the system [4], saving 

time, and low cost. Indeed, by using a MAS 

instead of a single-agent one, the following 

advantages are gained: (1) complicated and 

dangerous missions can be undertaken, (2) 

cost of performing a task can be reduced, (3) 

parallel processing can be implemented, (4) 

stability can be achieved and error reduced, 

(5) a MAS is scalable, and most 

importantly, (6) since no single element is 

responsible for thinking and decision-

making in a MAS (in other words, decision-

making is distributed), the system can 

continue functioning even if a part of it is 

disabled. 

In the cooperative control of MASs, agents 

interact locally with each other to achieve 

the desired macroscopic objective of the 

swarm system or MAS. Up to now, there are 

many different research branches in the 

cooperative control of MASs which include 

consensus control, formation control, 

containment control, formation-

containment control, consensus tracking 

control, flocking control, pursuit-evasion 

control, distributed filtering [5].  

Consensus control problem is one of the 

most fundamental and important problems 

in cooperative control of MASs. Consensus 

means the interaction between groups of 

agents in a team, via sensors or a 

communication network, to reach an 

agreement on a common value or state. In 

mobile robots, this common state can be a 

position where the robots must meet in an 

autonomous manner [6]. The consensus 

control of continuous-time MASs with 

general noises and delays is studied in [7]. 

To achieve consensus, agents in a swarm 

system often interact with each other 

locally. For each agent, the local interaction 

is realized by constructing distributed 

controller or protocol using neighboring 

relative information. Information exchange 

is an integral part of MASs. During an 

exchange of information, each agent 

updates the state of its current information 

based on the information it receives from its 

neighbors. Before introducing the 

consensus algorithms and protocols, it is 

necessary to model each agent of a MAS by 

means of dynamic structures and to present 

a specific consensus algorithm for that 

agent. For this purpose, based on the type of 

application and the required precision 

considered for a consensus problem, 

different models such as the single-

integrator model, double-integrator model 

and the high-order model can be used [8].  

In this article, we concern on the motion 

equations of some vehicles defined with 

double-integrator dynamic models. 

Contrary to the consensus problems in the 

single-integrator dynamic model, in which 

all the information states converge to 

constant and identical values, sometimes we 

need to get some information states 

converge to one constant value and the 

remaining information states to another 

constant value; in this case, we have to use 

double-integrator dynamic models. The 

double-integrator model is one of the 

simplest dynamic models for 

omnidirectional mobile robots. Ever since 

the advent of control theory, the double-

integrator control system has attracted a 

great deal of attention and is now a symbol 

of the controllers that achieve minimum 



29 
M. Bagherboum/ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 14 (2022) 0027~0046 

 

execution time and minimum fuel 

consumption. 

During the last two decades there has been 

an avalanche of papers covering various 

aspects of consensus problems with 

applications to decentralized and 

cooperative control, flocking and 

distributed formation, distributed 

optimization and estimation, 

communication and sensor networks, 

synchronization of coupled oscillators. 

Consideration has been given to a variety of 

topics, including convergence of various 

consensus protocols, consensus in the case 

of time varying network topologies, 

nonlinear system dynamics, quantization of 

information and noisy channels, packet 

drops and communication delays, 

randomized consensus algorithms and 

asynchronous algorithms. 

Recent advances in MASs coordination 

were first reported in 1995 by Vicsek et al. 

[9]. In this motivational article, they 

proposed a minimal model that described 

the phase transition of self-driven particles 

by a novel type of dynamics. Jadbabaie et 

al. [10] applied graph and matrix theories to 

present a theoretical description of 

consensus in the Vicsek model. The 

properties of the Laplacian matrix were 

used to analyze the problem of consensus in 

first-order MASs in [11]. Also, the 

relationship between algebraic graph 

connection, convergence rate, and 

maximum threshold of time-delay tolerance 

in consensus problems was investigated. 

Ren and Beard [12] explored the subject of 

consensus in second-order MASs and 

highlighted the importance of the topology 

of interaction between agents, including the 

directed spanning tree, for attaining 

asymptotic agreement. By introducing the 

Laplacian matrix, consensus problems have 

entered the theoretical analysis phase [13] 

and since then, the graph theory has become 

an important tool for the theoretical analysis 

of consensus problems. 

The theory of adaptive consensus deals with 

two distinct issues one of them is the 

problem of leaderless consensus where the 

aim is not to follow predetermined leader, 

but rather for all agents to achieve 

agreement on a common, unknown in 

advance value of their state. In [14], the case 

of known identical linear agent dynamics 

and undirected graph topology is analyzed, 

whereas in [15] identical linear and 

Lipschitz nonlinear dynamics on directed 

graphs are studied. In both articles, it is 

assumed that the high frequency gain 

(parameter multiplying agent input signal) 

or its sign (control direction) is known, and 

it is the same for all agents. They proved the 

interesting result that each agent state 

converges toward the average of its 

neighbors’ states. 

A continuous time consensus problem of 

second order systems governed by a 

directed graph is considered in [16]. The 

authors show that the error between any two 

agent positions converges to zero. They also 

show that in case of absolute velocity 

damping all velocities converge to zero, 

while in the case of relative velocity 

damping the difference between agent 

velocities converges to zero. In recent work 

by Chen et al. [17] continuous time adaptive 

consensus with unknown identical control 

directions is considered. The authors 

analyze an undirected graph and show that 

the difference between agent states tends to 

zero. In [18] the consensus problem of 

networked mechanical systems with time-

varying delay and jointly connected 

topologies is considered. It is assumed that 

the high-frequency gain is known, and the 

inter-agent coupling term in the consensus 
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protocol is nonadaptive with a fixed gain 

whose value is the same for all agents. 

In 2015, Radenkovic and Tadi [19], present 

consensus protocol over a network of MASs 

with discrete time integrator dynamics. The 

coupling coefficients defining interaction 

among agents are adaptively adjusted in 

time. In fact, they investigate the underlying 

graph where the input gain of any agent was 

different and an unknown scalar parameter. 

They are shown that the agent states 

converge toward the average of the initial 

state values and all agent states 

asymptotically reach consensus equal to the 

average of initial state values. In [20], the 

authors consider a network of 

heterogeneous agents whose dynamics are 

described by a double integrator discrete 

time model with the constant input gain 

(independent of time) of unknown 

magnitude. The proposed algorithm 

considers for each agent to locally tune the 

inter-agent coupling parameter. They 

proved all agent velocities converge to the 

same value, and the distance between any 

two agents converges to a finite limit. The 

proposed algorithm was a normalized 

gradient recursion based on minimizing the 

square of the error between an individual 

agent’s state (velocity) and the one step 

delayed average of its own state and the 

states of its neighbors. 

At present, the research on MAS is mostly 

based on homogeneous agents, and the 

research on heterogeneous agents is even 

less. In [21], a novel distributed adaptive 

controllers for leaderless synchronization in 

networks of identical discrete-time 

dynamical systems is proposed. It is proved 

that all agent outputs converge toward an 

emerging, unknown in advance, 

synchronization trajectory. This trajectory 

is not available for use by the agent’s 

controllers, and its pattern is determined by 

the initial conditions and the internal model 

built-in in the distributed adaptation 

mechanism. Compared to [17], where a 

synchronization trajectory is a constant, 

they allow arbitrary form for a 

synchronization trajectory. Shi et al. [22] 

have addressed the consensus problem of 

heterogeneous second-order MASs under 

linear and non-linear conditions. In this 

paper, a valid control law is given for each 

agent based on the communication with 

their neighbors, and sufficient condition is 

obtained to determine some parameters in 

controller. Zhao et al. [23] analyzed the 

consensus of heterogeneous MASs. They 

studied the average consensus of 

heterogeneous multi-agents, including 

continuous-time consensus protocol, 

discrete-time consensus protocol, 

consensus with time delay, and consensus 

of switching topology. 

In this paper, we investigate consensus 

protocol where the coupling parameters 

defining the strength of agent's interactions 

are locally self-tuning. Each agent locally 

tunes the strength of interaction with 

neighboring agents by using a normalized 

gradient algorithm (NGA). The tuning 

algorithm minimizes the square of the error 

between an individual agent’s velocity and 

the one step delayed average of its own 

velocity and the velocities of its neighbors. 

Agent dynamics are described by a discrete-

time double integrator with time-varying 

nonhomogeneous input gain. Assuming that 

the underlying graph is directed and 

strongly connected and it satisfies some 

additional constraints, it is proved that the 

sequence of coupling parameters is 

convergent. Also, it is shown all velocities 

converge toward the same constant value, 

where it is the average of the initial 

velocities. In addition, it is proved that the 

distance between any two agents converges 
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to a finite limit. Finally, the validity of the 

theoretical method has been illustrated by 

numerical simulation.  

Based on our previous discussion, the main 

contributions of this paper are three-fold, 

which is shown as follows. 

1) The network topology is assumed to be a 

directed graph, whereas in [17] an 

undirected graph is considered. 

2) The consensus problem is investigated 

for multi-agent networks with time-

varying nonhomogeneous input gain, 

which is more general than the constant 

input gain in [17]. 

3) In [17] it is shown the agent velocities 

converge toward the same constant 

value, while we prove that they converge 

toward the average of the initial 

velocities values. 
The remainder of the paper is arranged as 

follows. Problem statement is given in 

Section 2 and the relation of self-tuning 

consensus to Kuramoto synchronization is 

discussed. Section 3 presents the proposed 

algorithm and also global stability and 

convergence of self-tuning consensus are 

given in this section. A simulation example 

is presented in Section 4. 

2- Problem formulation 

It is natural to model information exchange 

among vehicles by directed or undirected 

graphs. Suppose that a team consists of N 

vehicles. A directed graph is a pair 𝐺 =

(𝑉, 𝐸), where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} is a finite 

nonempty node set and 𝐸 ⊆ V × 𝑉 is an edge 

set of ordered pairs of nodes, called edges. 

The edge (𝑣𝑖 , 𝑣𝑗) in the edge set of a directed 

graph denotes that vehicle 𝑣𝑗  can obtain 

information from vehicle 𝑣𝑖, but not 

necessarily vice versa. If an edge (𝑣𝑖, 𝑣𝑗) ∈

𝐸, then node 𝑣𝑖 is a neighbor of node 𝑣𝑗 . The 

set of neighbors of node 𝑣𝑖  is denoted as 

𝒩𝑖. 

In sequence, consider a cooperative group 

of N agents where the dynamics of the ith 

agent are described by the following 

discrete time system  

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                  (2-1) 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝛽𝑖(𝑡) 𝑢𝑖(𝑡)               (2-2) 

where time 𝑡 ≥ 0 take on nonnegative 

integer values, 𝑥𝑖(𝑡)𝜖ℝ and 𝑣𝑖(𝑡)𝜖ℝ are the 

position and velocity respectively. 𝑢𝑖(𝑡)𝜖ℝ 

is the control signal or consensus protocol 

of the agent, which is a function of the ith 

agent velocity and the velocities of its 

neighbors. Moreover, 𝛽𝑖(𝑡)𝜖ℝ is an 

unknown input gain. The model defined by 

Eq. (2-2) can be viewed as a discrete time 

version of a kinematic model, 

𝑑

𝑑 𝜏
𝑣𝑖(𝜏) =

1

𝑚𝑖
𝑢𝑖(𝜏),            𝜏 ≥ 0, 

for 𝑖 = 1,… ,𝑁, where 𝑣𝑖(𝜏) is velocity and 

𝑢𝑖(𝜏) is driving force of the ith agent 

respectively, where 𝑚𝑖 is its mass. Such 

model can be of interest in analyzing flock 

behavior or considering the problem of 

achieving common velocity in a formation 

of unmanned aerial vehicles. In this case 

due to the fuel consumption during flight, 

mass 𝑚𝑖 can be a slowly time-varying 

quantity. The parameter 𝛽𝑖(𝑡) in Eq. (2-2) 

can be interpreted as the inverse of mass 𝑚𝑖. 

The above described scenario can be 

encountered in problems of velocity 

coordination in robot formation control. As 

is described in [17], for robots produced in 

the same batch it is reasonable to assume 

that all units have the same dynamics and 

the same control directions.  

It is plausible to assume that in natural 

phenomena such as flocks, each agent 

adjusts its velocity so that it is as close as 

possible to the average of the velocities of 

its neighbors, i.e. 𝑢𝑖(𝑡) is proportional to the 
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local velocity mismatch defined by 𝜑𝑖(𝑡) =

�̅�𝑖(𝑡) − 𝑣𝑖(𝑡), where �̅�𝑖(𝑡) =
1

1+𝑁𝑖
∑  𝑣𝑗(𝑡)𝑗∈𝒩𝑖

′ , where 𝑁𝑖 is the cardinality 

of 𝒩𝑖, and 𝒩𝑖
′ = 𝒩𝑖 ∪ {𝑖}. Thus 𝑢𝑖(𝑡) =

𝜃𝑖(𝑡) 𝜑𝑖(𝑡), where 𝜃𝑖𝑗(t) ∈ ℝ are integrant 

coupling parameters to be determined so 

that all agent velocities achieve average 

consensus. The network theory literature 

often refers to 𝑢𝑖(𝑡) as the consensus 

protocol and we say that the network 

achieves average consensus if 𝑣𝑐 =
1

𝑁
∑ 𝑣𝑖(0)
𝑁
𝑖=1 .  

The aim of the average consensus protocol 

is to converge the values of all the nodes in 

a network to the mean value of data 

measured by the initial nodes. Average 

consensus has various applications. The 

calculation of distributed mean consensus 

in wireless sensor networks has been 

explored in [24]; and for this purpose, a 

completely distributed algorithm has been 

presented, which is able to average the data 

measured in the network itself. 

In this paper, we consider the consensus 

protocol as the weighted average of the 

velocities of the agents as follow 

𝑢𝑖(𝑡) = ∑ 𝜃𝑖𝑗(𝑡)(𝑣𝑗(𝑡) − 𝑣𝑖(𝑡)) 𝑗𝜖𝒩𝑖
      (2-3) 

where the coupling coefficients 𝜃𝑖𝑗(𝑡) 

defining interaction among agents are 

adaptively adjusted in time. Note that the 

control signal given in Eq. (2-3) can be 

written in the form 

𝑢𝑖(𝑡) = 𝜽𝒊(𝑡)
T𝝋𝒊(𝑡)                               (2-4) 

where 

𝜽𝒊(𝑡)
𝑇 = [𝜃𝑖1(𝑡)𝐼𝑖1, … , 𝜃𝑖𝑁(𝑡)𝐼𝑖𝑁]        (2-5) 

and 

𝝋𝒊(𝑡)
𝑇 = [𝜀𝑖1(𝑡), … , 𝜀𝑖𝑁(𝑡)]                (2-6) 

where 𝜀𝑖𝑗(𝑡) = (𝑣𝑗(𝑡) − 𝑣𝑖(𝑡)) 𝐼𝑖𝑗  and 𝐼𝑖𝑗 is 

an indicator function given by  

𝐼𝑖𝑗 = {
1,    𝑗 ∈ 𝒩𝑖
0,    𝑗 ∉ 𝒩𝑖.

  

After substituting Eq. (2-4) in Eq. (2-2) we 

arrive at the following evolution of 𝑣𝑖(𝑡), 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝛽𝑖(𝑡)𝜽𝒊(𝑡)
𝑇𝝋𝒊(𝑡),     

𝑖 ∈ 𝑉.                                                    (2-7) 

Now that we have derived model (2-7) we 

can relate multi-agent velocity consensus to 

frequency synchronization problems in 

linearly phase coupled oscillators described 

by 

�̇�𝑖(𝜏) = Ω𝑖 + 𝐾𝑖
1

1 + 𝑁𝑖
∑ (𝑥𝑗(𝜏) − 𝑥𝑖(𝜏)) ,

𝑗 𝜖 𝒩𝑖
′

 

𝑖 ∈ 𝑉                                                     (2-8) 

where 𝑥𝑖(𝜏) is the phase of the ith oscillator, 

Ω𝑖 is its natural frequency and 𝐾𝑖 is the 

coupling gain. Let frequency �̇�𝑖(𝜏) at 

time 𝜏 = t𝑇𝑠, 𝑡 = 0, 1, 2, …, be approximated 

by 

𝑑

𝑑𝜏
𝑥𝑖(𝜏)|

𝜏=𝑡𝑇𝑠

=
𝑥𝑖((𝑡 + 1)𝑇𝑠) − 𝑥𝑖(𝑡𝑇𝑠)

𝑇𝑠
 

where 𝑇𝑠 is the sampling interval. Then 

from Eq. (2-8) we can write 

𝑥𝑖((𝑡 + 1)𝑇𝑠) − 𝑥𝑖(𝑡𝑇𝑠)

𝑇𝑠
= Ω𝑖 + 

𝐾𝑖
1

1 + 𝑁𝑖
∑ (𝑥𝑗(𝑡𝑇𝑠) − 𝑥𝑖(𝑡𝑇𝑠)) .

𝑗 𝜖 𝒩𝑖
′

 

By assuming 𝜓𝑖(𝑡) =
1

1+𝑁𝑖
∑ (𝑥𝑗(𝑡) −𝑗 𝜖 𝒩𝑖

′

𝑥𝑖(𝑡)) and 𝜃𝑖 = 𝐾𝑖𝑇𝑠, this relationship will 

be as follows 

𝑣𝑖((𝑡 + 1)𝑇𝑠) = Ω𝑖𝑇𝑠 + 𝜃𝑖𝜓𝑖(𝑡𝑇𝑠)          (2-9) 

https://www.sciencedirect.com/topics/engineering/wireless-sensor-network
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𝑣𝑖((𝑡 + 1)𝑇𝑠) = 𝑥𝑖((𝑡 + 1)𝑇𝑠) − 𝑥𝑖(𝑡 𝑇𝑠), 

   𝑣𝑖(0) = Ω𝑖𝑇𝑠. 

The initial condition 𝑣𝑖(0) is determined so 

that 𝑣𝑖(𝑡) = 0 and 𝑥𝑖(𝑡) = 0 for all 𝑡 < 0. 

Note that for the sake of simpler notation 

the constant 𝑇𝑠 has been omitted in signal 

arguments, i.e.  𝑥𝑖(𝑡𝑇𝑠) = 𝑥𝑖(𝑡), 𝑡 ≥ 0. 

Obviously we can think of 𝑣𝑖(𝑡) as the 

‘‘normalized frequency’’ at a discrete time 

t. Then for any agent 𝑖 ∈ 𝑉, Eq. (2-9) can be 

written as follow 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝜃𝑖(𝜓𝑖(𝑡) − 𝜓𝑖(𝑡 − 1)) 

= 𝑣𝑖(𝑡) +
𝜃𝑖

1 + 𝑁𝑖
∑ (𝑣𝑗(𝑡) − 𝑣𝑖(𝑡))

𝑗∈𝒩𝑖
′

 

 = 𝑣𝑖(𝑡) + 𝜽𝒊(𝑡)
T 𝝋𝒊(𝑡),       𝑣𝑖(0) = Ω𝑖𝑇𝑠

 

which is the same as consensus model (2-7) 

with 𝜽𝒊(𝑡)
𝑇 = [

𝜃𝑖

1+𝑁𝑖
, … ,

𝜃𝑖

1+𝑁𝑖
]. 

3- Convergence of self-tuning consensus 

In this section, without using any global 

information, the coupling coefficients are 

generated by minimizing its local cost 

function. The cost function is equal to the 

square of the local error between the agent 

velocity and the weighted average of the 

velocities of interacting neighbors. Therefor 

the proposed algorithm is a normalized 

gradient recursion based on minimizing the 

square of the error between an agent 

velocity and the one step delayed average of 

its own velocity and the velocities of its 

neighbors. Assuming that the underlying 

graph is connected, it is shown that the 

sequence of the inter-agent coupling 

parameters generated by the local cost 

function is convergent and all agent 

velocities achieve strict-sense consensus; 

i.e. lim
𝑡 → ∞

𝑣𝑗(𝑡) − 𝑣𝑖(𝑡) = 0, ∀𝑖, 𝑗 ∈ 𝑉 and 

lim
𝑡 → ∞

𝑣𝑖(𝑡) = 𝑣𝑐 , ∀𝑖 ∈ 𝑉 for some finite 𝑣𝑐. In 

other words, each agent adjusts its velocity 

so that it is as close as possible to the 

average of the initial velocities of its 

neighbors; i.e. 𝑣𝑐 =
1

𝑁
 ∑ 𝑣𝑖(0)

𝑁
𝑖=1 . 

Furthermore, the distance between any two 

agents converges to a finite limit. 

As previously stated, we consider a double 

integrator multi-agent as follow 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝛽𝑖(𝑡) 𝜽𝒊(𝑡)
T𝝋𝒊(𝑡).   (3-1) 

It can be written in the compact form as 

𝐯(t + 1) = 𝐖(t)𝐯(t)                              (3-2) 

where 𝐯(t) is given by 𝐯(t) =

[𝑣1(t), … , 𝑣N(t)] and  𝐖(t) is a 𝑁 × 𝑁 matrix 

defined as follows 

𝐖(t) =  [𝑤ij(t)],                                     (3-3) 

𝑤𝑖𝑗(𝑡) = {

𝛽𝑖(𝑡)𝜃𝑖𝑗(𝑡),                         𝑗 ∈ 𝒩𝑖
1 − 𝛽𝑖(𝑡) ∑ 𝜃𝑖𝑗(𝑡),        𝑖 = 𝑗𝑗𝜖𝒩𝑖

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

              

It is well-known that the condition for the 

iteration in Eq. (3-2) to converge to the 

average of initial velocities is 𝒍𝑇 = [1,… ,1] 

to be left and right eigenvector of 𝐖(t) 

corresponding to the eigenvalue 𝜆1 = 1, i.e. 

𝒍𝑇𝐖(t) = 𝒍𝑇 ,𝐖(t)𝒍 = 𝒍. Then, the sum of 

the velocities is time invariant, i.e. 𝒍𝑻𝐕(t +

1) = 𝒍𝑻𝐕(t) = ⋯ = 𝒍𝑻𝐕(0), and 𝒍 (or scalar 

multiple of it) is a fixed point of the 

recursion defined by Eq. (3-2). 

Agent 𝑖𝜖 𝑉 tunes coupling parameter 𝜽𝒊(𝑡) 

so that the following local cost function is 

minimized. 

𝑱𝒊(𝜽𝒊) =
1

2
(𝑣𝑖(𝑡 + 1) − �̿�𝑖(𝑡 + 1))

2 ,  

𝑖 ∈ 𝑉                                          (3-4) 
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where �̿�𝑖(𝑡 + 1) represents the one step 

delayed weighted average of the ith agents 

neighbors’ velocities, including its own 

velocity, i.e. 

�̿�𝑖(𝑡 + 1) = ∑ 𝑚𝑖𝑗𝑣𝑖(𝑡)
𝑁
𝑗=1                      (3-5) 

where  

𝑚𝑖𝑗 =

{
 
 

 
 
1 − 𝛼𝑖
1 + 𝑁𝑖

,                 0 ≤ 𝛼𝑖 < 1, 𝑗 ∈ 𝒩𝑖

𝛼𝑖 +
1 − 𝛼𝑖
1 + 𝑁𝑖

,                                  𝑗 = 𝑖

0,                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

It is obvious from Eq. (3-5) that when α𝑖 =

0, the average �̿�𝑖(𝑡 + 1) becomes equal to 

the uniformly weighted average. In addition 

when calculating �̿�𝑖(𝑡 + 1) agent i assigns 

more weight to its value than to any 

individual neighbor. By virtue of the fact 

that from Eqs. (3-1) (3-4) and (3-5) the 

gradient of 𝑱𝑖(𝜽𝑖) with respect to 𝜽𝑖(𝑡) is 

𝜕𝑱𝒊(𝜽𝒊)

𝜕𝜽𝒊
= (𝑣𝑖(𝑡 + 1)−�̿�𝑖(𝑡 + 1)) 𝛽𝑖(𝑡) 𝝋𝑖(𝑡). 

Since from Eq. (2-7), 
𝜕𝑣𝑖(𝑡+1)

𝜕𝜽𝑖(𝑡)
= 𝛽𝑖(𝑡)𝝋𝑖(𝑡) 

gradient based minimization of the cost 

function given in Eq. (3-4) suggests the 

following updating rule for 𝜽𝑖(𝑡) and 𝜽𝑖(𝑡) 

can be tuned by the following recursive 

procedure 

𝜽𝒊(𝑡 + 1) = 𝜽𝒊(𝑡) 

− 𝛽𝑖(𝑡) 𝝋𝒊(𝑡) (𝑣𝑖(𝑡 + 1)−�̿�𝑖(𝑡 + 1) 

However, since 𝛽𝑖(𝑡)  is unknown, instead 

of the previous equation, agent i can use the 

following normalized gradient algorithm 

𝜽𝒊(𝑡 + 1) = 𝜽𝒊(𝑡) − 

𝜇𝑖

𝑟𝑖(𝑡)
 𝑠𝑔𝑛(𝛽𝑖(𝑡)) 𝝋𝒊(𝑡) 𝑒𝑖(𝑡 + 1)             (3-6) 

where it is assumed that 𝑠𝑔𝑛(𝛽𝑖(𝑡)), the sign 

of 𝛽𝑖(𝑡) is known, 𝜇𝑖 > 0 is the algorithm 

step size, 𝝋𝒊(𝑡) is the local velocity 

mismatch defined by (2-6), 𝑒𝑖(𝑡 + 1) is the 

cost function error given by 

𝑒𝑖(t + 1) = 𝑣𝑖(𝑡 + 1)−�̿�𝑖(𝑡 + 1)             (3-7) 

with �̿�𝑖(𝑡 + 1) defined by (3-5), and 𝑟𝑖(𝑡) 

being the gradient normalizer given by 

𝑟𝑖(𝑡) = 1 + ‖𝝋𝒊(𝑡)‖
2, 𝑖𝜖𝑉. 

Recursion (3-6) starts with some finite 

initial 𝜽𝒊(0). 

In sequel, we consider the following vectors  

𝒆(𝑡)𝑇 = [𝑒1(𝑡), … , 𝑒𝑁(𝑡)]           

𝚽𝑖(t) = 𝐯(t) − 𝑣𝑖(𝑡)𝒍                   (3-8) 

and we show that sequences {𝑒𝑖(𝑡)}t≥0 and 

{𝝋𝒊(𝑡)}t≥0 generated by the algorithm (3-6) 

and (3-7) along with system dynamics (2-7) 

have finite total energies for all finite initial 

conditions 𝑥𝑖(0), 𝜽𝒊(0), 𝑣𝑖(0), 𝑖 ∈ 𝑉. 

Lemma 1. Let the underlying directed 

graph G is strongly connected. Then for all 

𝑖 = 1,… ,𝑁, ∀ 𝑛 ≥ 0, 

∑‖𝚽𝑖(𝑡 + 1)‖
2 ≤ 𝑐∑‖𝒆(𝑡 + 1)‖2

𝑛

𝑡=0

𝑛

𝑡=0

,   

where 𝑐 is positive constant. 

Proof. From (3-5) and (3-7) we can write 

𝐯(𝑡 + 1) = 𝐌 𝐯(𝑡) + 𝒆(𝑡 + 1) 

where M is the 𝑁 × 𝑁 matrix given by 𝐌 =

[𝑚𝑖𝑗] with elements 𝑚𝑖𝑗 defined by (3-5). 

By using the fact that ∑ 𝑚𝑖𝑗
𝑁
𝑗=1 = 1 for all 

𝑖𝜖𝑉, we conclude that 𝜆1 = 1 is an 

eigenvalue of M with the corresponding 

right eigenvector 𝒍𝑇 = [1,… ,1], i.e. 𝐌𝒍 = 𝒍. 

Since M is a stochastic matrix, 𝜆1 = 1 is its 

maximal eigenvalue [25, p. 527]. By virtue 

of the fact that G is a connected graph, the 

nonnegative matrix M is irreducible 
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implying that 𝜆1 = 1 is an algebraically 

simple eigenvalue of M [25, Theorems 

6.2.24, p. 362 and 8.4.4, p. 508]. 

Furthermore, if the nonnegative matrix is 

irreducible and any main diagonal element 

is positive, such matrix must be primitive 

[25, Theorems 8.5.2, p. 516 and 8.5.10, p. 

520]. Consequently, except 𝜆1 = 1, the rest 

of the eigenvalues 𝜆𝑖 of the matrix M satisfy 

the condition |𝜆𝑖| < 1, 𝑖 = 2,… ,𝑁. Let 𝒚1 be 

the left eigenvector of M associated to 𝜆1 =

1, and normalized so that 𝒚1
𝑇𝒍 = 1.  

Based on this discussion we can decompose 

the matrix M as follows 

𝐌 = 𝐌1 + 𝒍𝒚1
𝑇 ,       𝒍𝑇𝐲1 = 1                 (3-9) 

where all eigenvalues of 𝐌1 are inside the 

unit circle, i.e. the spectral radius of 𝐌1 

satisfies 𝜌(𝐌1) < 1. Hence from Eq. (3-9), 

one can obtain 

𝐯(𝑡 + 1) = 𝐌1𝐯(𝑡) + 𝒍𝒚1
𝑇𝐯(𝑡) + 𝒆(𝑡 + 1). 

Define 

𝐇(𝑞−1) = (𝐼 − 𝑞−1𝐌1)
−1 

where 𝑞−1 is the unit delay operator. The 

fact 𝜌(𝐌1) < 1 implies that 𝐇(𝑞−1) is a 

stable operator. Since 𝐌1𝒍 = 0 we have 

𝐇(𝑞−1)𝒍 = 𝒍. After multiplying both sides of 

the last equation with 𝐇(𝑞−1) we can write 

𝐇(𝑞−1)𝐯(𝑡 + 1) = 𝐇(𝑞−1)𝐌1𝐯(𝑡) +

𝒍𝒚1
𝑇𝐯(𝑡) +  𝐇(𝑞−1)𝒆(𝑡 + 1). 

But  

𝐇(𝑞−1)𝐯(𝑡 + 1) = 𝐯(𝑡 + 1) 

                               +∑ 𝑞−𝑘+1𝐌1
𝑘𝐯(𝑡)

∞

𝑘=1

= 𝐯(𝑡 + 1) + 𝐇(𝑞−1)𝐌1𝐯(𝑡) 

then the previous equation gives 

𝐯(𝑡 + 1) = 𝒍𝒚1
𝑇𝐯(𝑡) + 𝐇(𝑞−1)𝒆(𝑡 + 1).(3-10) 

Now using the fact that 𝒚1
𝑇𝒍 = 1 we can 

derive from Eq. (3-8)   

𝚽𝑖(𝑡 + 1) = 𝐯(𝑡 + 1) − 𝑣𝑖(𝑡 + 1)𝒍  = 

                    = 𝒍𝒚1
𝑇[𝐯(𝑡) − 𝑣𝑖(𝑡)𝒍] 

+𝒍[𝑣𝑖(𝑡) − 𝑣𝑖(𝑡 + 1)] +  𝐇(𝑞
−1)𝒆(𝑡 + 1). 

Note that given by Eq. (3-5) can be written 

in the form 

�̿�𝑖(𝑡 + 1) = ∑ 𝑚𝑖𝑗𝑣𝑗(𝑡)
𝑁
𝑗=1   

= 𝑣𝑖(𝑡) + 𝒂𝑖
𝑇𝚽𝑖(𝑡)                (3-11) 

where 𝒂𝑖
𝑇 is defined as follows 

𝒂𝑖
𝑇 = [𝑎𝑖1… . 𝑎𝑖𝑁], 

  𝑎𝑖𝑗 = {

1−𝛼𝑖

1+𝑁𝑖
,    𝑗 ∈ 𝒩𝑖 , 0 ≤ 𝛼𝑖 ≤ 1

0,                           otherwise.
   (3-12) 

Then the error 𝑒𝑖(𝑡 + 1) given by Eq. (3-7) 

can be expressed as 

𝑒𝑖(𝑡 + 1) = 𝑣𝑖(𝑡 + 1) − �̿�𝑖(𝑡 + 1) 

          = 𝑣𝑖(𝑡 + 1) − 𝑣𝑖(𝑡) − 𝒂𝑖
𝑇𝚽𝑖(𝑡). 

From Eqs. (3-8) and (3-10) we can derive 

𝚽𝒊(𝑡 + 1) = 𝒍𝒚1
𝑇𝚽𝒊(𝑡)

+ 𝒍 (−𝒂𝑖
𝑇𝚽𝒊(𝑡) − 𝑒𝑖(𝑡 + 1))

+ 𝐇(𝑞−1)𝒆(𝑡 + 1) 

= 𝒍(𝒚1
𝑇 − 𝒂𝑖

𝑇)𝚽𝒊(𝑡) − 𝑒𝑖(𝑡 + 1)𝒍 +

𝐇(𝑞−1)𝒆(𝑡 + 1). 

Define the following matrix 

𝐐𝑖 = 𝒍(𝒚𝟏 − 𝒂𝑖)
𝑇 , 𝑖 ∈ V. 

Then one can obtain 

𝚽𝒊(𝑡 + 1) = 𝐐𝒊𝚽𝒊(𝑡) − 𝑒𝑖(𝑡 + 1)𝒍 

         +𝐇(𝑞−1)𝒆(𝑡 + 1). 
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With assuming 𝐋𝒊(𝑞
−1) = (𝐼 − 𝑞−1𝐐𝑖)

−1, we 

have 

𝐋𝒊(𝑞
−1)𝚽𝒊(𝑡 + 1) = 𝐋𝒊(𝑞

−1)𝐐𝑖𝚽𝒊(𝑡) −

𝐋𝒊(𝑞
−1)𝑒𝑖(𝑡 + 1)𝒍 + 𝐋𝒊(𝑞

−1)𝑯(𝑞−1)𝒆(𝑡 + 1). 

Again, 𝑞−1 is the unit delay operator, 

according to Eq. (3-10), we have 

𝐋𝑖(𝑞
−1)𝚽𝑖(𝑡 + 1) = 𝚽𝑖(𝑡 + 1) 

                   +∑ 𝑞−𝑘+1𝐐𝑖
𝑘𝚽𝑖(𝑡)

∞

𝑘=1

 

= 𝚽𝑖(𝑡 + 1) + 𝐋𝑖(𝑞
−1)𝐐𝑖𝚽𝑖(𝑡). 

Hence 

𝚽𝑖(𝑡 + 1) = −𝐋𝑖(𝑞
−1)𝑒𝑖(𝑡 + 1)𝒍         (3-13) 

  +𝐋𝑖(𝑞
−1)𝐇(𝑞−1)𝒆(𝑡 + 1) 

= 𝐋𝑖(𝑞
−1)[𝐇(𝑞−1)𝒆(𝑡 + 1) − 𝑒𝑖(𝑡 + 1)𝒍].  

Note that the matrix 𝐐𝑖 is of rank 1 and its 

only nonzero eigenvalue is 𝜌1 = 𝒍
𝑇(𝒚1 −

𝒂𝑖). Since 𝒍𝑇𝐲1 = 1 and from (3-12) 
1+𝛼𝑖 𝑁𝑖

1+𝑁𝑖
< 1, we have 

𝜌1 = 𝒍
𝑇(𝒚1 − 𝒂𝑖) = 1 − 𝒍

𝑇𝒂𝑖 

= 1 − ∑ 𝑎𝑖𝑗 = 1 −
(1−𝛼𝑖)𝑁𝑖

1+𝑁𝑖
=

1+𝛼𝑖 𝑁𝑖

1+𝑁𝑖
< 1𝑁

𝑗=1 , 

where we have used the fact that 𝛼𝑖 < 1. 

Hence, all eigenvalues of 𝐐𝑖 are inside the 

unit circle and consequently 𝐋𝒊(𝑞
−1) is a 

stable operator. By virtue of the fact that 

𝑯(𝑞−1) is a stable operator, ‖𝐇(𝑞−1)‖ ≤ 1 

and ‖𝐋𝒊(𝑞
−1)‖ ≤ 1. Then from Eq. (3-13) 

we have 

‖𝚽𝑖(𝑡 + 1)‖ ≤ 

‖𝐋𝑖(𝑞
−1)‖[‖𝐇(𝑞−1)‖‖𝒆(𝑡 + 1)‖ + ‖𝑒𝑖(𝑡 + 1)𝒍‖] 

≤ [‖𝐇(𝑞−1)‖‖𝒆(𝑡 + 1)‖ + √𝑁‖𝒆(𝑡 + 1)‖] 

≤ (1 + √𝑁)‖𝒆(𝑡 + 1)‖ = 𝑐1‖𝒆(𝑡 + 1)‖  

where 𝑒𝑖(𝑡 + 1) is absorbed by 𝒆(𝑡 + 1). 

Summing up both sides of above inequality 

from 𝑡 = 0 to 𝑡 = 𝑛 yields   

∑‖𝚽𝑖(𝑡 + 1)‖
2

𝑛

𝑡=0

≤ 𝑐1
2∑‖𝒆(𝑡 + 1)‖2

𝑛

𝑡=0

. 

Thus the lemma is proved. 

In the following, we prove that the sequence 

of coupling parameters is convergent. 

Lemma 2. Let the underlying directed 

graph G is strongly connected. Also, let the 

sign of 𝛽𝑖 in Eq. (2-2) and the upper bound 

𝛽𝑖𝑚𝑎𝑥 of |𝛽𝑖(𝑡)| are known to agent i and the 

lower bound 𝛽𝑖𝑚𝑖𝑛 of |𝛽𝑖(𝑡)| is nonzero. The 

step size 𝜇𝑖 in Eq. (3-6) satisfies 𝜇𝑖 <
2

𝛽𝑖𝑚𝑎𝑥
, 

for all 1 ≤ 𝑖 ≤ 𝑁. Then there exist some 

positive constants 𝑐2, 𝑐3 and 𝑐4 so that for 

all initial conditions 𝑥𝑖(0), 𝑣𝑖(0) and  𝜃𝑖𝑗(0) 

(1 ≤ 𝑖 , 𝑗 ≤ 𝑁) the MAS given by Eq. (2-7) 

and the parameter estimation algorithm 

defined by (3-6) provide  

(1)∑‖𝒆(𝑡 + 1)‖2 ≤ 𝑐2 < ∞,

𝑛

𝑡=0

     ∀𝑛 ≥ 0 

(2)∑‖𝚽𝒊(𝑡)‖
2 ≤ 𝑐3 < ∞,

𝑛

𝑡=0

 ∀𝑛 ≥ 0, 

 ∀ 𝑖 ∈ V 

(3)∑(𝑣𝑖(𝑡)−𝑣𝑗(𝑡))
2

𝑛

𝑡=0

≤ 𝑐4 < ∞, 

  ∀𝑛 ≥ 0, ∀𝑖, 𝑗 ∈ V 

(4) lim
𝑡→∞

𝜽𝒊(𝑡) = �̅�𝒊,      𝑖 ∈ V,  

for some finite �̅�𝒊. 

Proof. In view of Eq. (2-6), Eq. (3-11) can 

be written in the form 

�̿�𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝒂𝑖
𝑇𝝋𝑖(𝑡). 
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Note that according to Eqs. (2-7) and (3-7) 

we have 

𝑒𝑖(𝑡 + 1) = 𝑣𝑖(𝑡 + 1) − �̿�𝑖(𝑡 + 1)                   

                  = 𝑣𝑖(𝑡) + 𝛽𝑖(𝑡)𝜽𝑖
𝑇(𝑡)𝝋𝑖(𝑡) − 

(𝑣𝑖(𝑡) + 𝒂𝑖
𝑇𝝋𝑖(𝑡)) 

     = (𝛽𝑖(𝑡)𝜽𝑖(𝑡) − 𝒂𝑖)
𝑇𝝋𝑖(𝑡). 

Now, by defining 

�̃�𝑖(𝑡) = 𝛽𝑖(𝑡)𝜽𝑖(𝑡) − 𝒂𝑖                       (3-14) 

the parameter error 𝑒𝑖(𝑡 + 1) can be 

expressed in terms of �̃�𝑖(𝑡) as follows 

𝑒𝑖(𝑡 + 1) = �̃�𝑖
𝑇(𝑡)𝝋𝑖(𝑡)                       (3-15) 

where the parameter errors �̃�𝑖 are in effect 

governed by the recursion given by Eq. (3-

6). According to the definitions given by 

Eqs. (2-5) and (3-14) and from Eq. (3-6) the 

following recursion can be obtained for the 

components �̃�𝑖 

�̃�𝑖𝑗(𝑡 + 1) = 

= �̃�𝑖𝑗(𝑡) −
𝜇𝑖

𝑟𝑖(𝑡)
|𝛽𝑖(𝑡)|𝜀𝑖𝑗(𝑡)𝑒𝑖(𝑡 + 1)   (3-16) 

Now, we define 𝐿(𝑡) = ∑ ‖�̃�𝑖(𝑡)‖
2𝑁

𝑖=1 , where 

‖�̃�𝑖(𝑡)‖
2
= ∑ �̃�𝑖𝑗

2 (𝑡)𝐼𝑖𝑗
𝑁
𝑗=1 . Clearly 𝐿(𝑛) ≥ 0, 

for all 𝑛 ∈ ℕ. Also, in view of the recursion 

relation (3-16), the sequence {𝐿(𝑛)} is non-

increasing. So 𝐿(𝑛) ≤ 𝐿(0), which shows 

{𝐿(𝑛)} is a bounded sequence. Moreover, 

Eq. (3-16) implies that 

𝐿(𝑡 + 1) ≤ 𝐿(𝑡) 

−2∑
𝜇𝑖
𝑟𝑖(𝑡)

|𝛽𝑖(𝑡)|𝑒𝑖(𝑡 + 1)

𝑁

𝑖=1

∑�̃�𝑖𝑗(𝑡) 𝐼𝑖𝑗  𝜀𝑖𝑗(𝑡)

𝑁

𝑗=1

 

+∑
𝜇𝑖
2

𝑟𝑖
2(𝑡)

𝛽𝑖
2(𝑡)𝑒𝑖

2(𝑡 + 1)

𝑁

𝑖=1

∑𝜀𝑖𝑗
2 (𝑡)𝐼𝑖𝑗

𝑁

𝑗=1

. 

Also, relations Eqs. (2-5), (2-6) and (3-15)  

imply that  

𝑒𝑖(𝑡 + 1) = �̃�𝑖(𝑡)
𝑇𝝋𝑖(𝑡) 

= ∑ �̃�𝑖𝑗(𝑡)𝜀𝑖𝑗(𝑡)𝐼𝑖𝑗
𝑁
𝑗=1             (3-17) 

By using ∑ 𝜀𝑖𝑗
2 (𝑡) = ‖𝝋𝑖(𝑡)‖

2𝑁
𝑗=1  it follows 

that  

𝐿(𝑡 + 1) ≤ 𝐿(𝑡) 

             −2∑
𝜇𝑖  

𝑟𝑖(𝑡)
|𝛽𝑖(𝑡)|𝑒𝑖

2(𝑡 + 1) 

𝑁

𝑖=1

 

+ ∑
𝜇𝑖
2 

𝑟𝑖(𝑡)
𝛽𝑖
2(𝑡)

‖𝝋𝑖(𝑡)‖
2

𝑟𝑖(𝑡)
𝑒𝑖
2(𝑡 + 1)

𝑁

𝑖=1

 

Define 𝑟𝑖(𝑡) = 1 + ‖𝝋𝑖(𝑡)‖
2, we can obtain 

𝐿(𝑡 + 1) ≤ 𝐿(𝑡) − 2∑
𝜇𝑖
𝑟𝑖(𝑡)

|𝛽𝑖(𝑡)|𝑒𝑖
2(𝑡 + 1)

𝑁

𝑖=1

+∑
𝜇𝑖
2

𝑟𝑖(𝑡)
𝛽𝑖
2(𝑡)𝑒𝑖

2(𝑡 + 1)

𝑁

𝑖=1

 

or 

𝐿(𝑡 + 1) ≤ 𝐿(𝑡) 

−2∑𝜇𝑖 |𝛽𝑖(𝑡)| (1 −
𝜇𝑖 |𝛽𝑖(𝑡)|

2
)
𝑒𝑖
2(𝑡 + 1)

𝑟𝑖(𝑡)

𝑁

𝑖=1

. 

Summing up both sides of the previous 

equation from 𝑡 = 0 to 𝑡 = 𝑛 gives 

𝐿(𝑛 + 1) ≤ 𝐿(0) 

−2∑∑𝜇𝑖|𝛽𝑖(𝑡)|(1 −
𝜇𝑖  |𝛽𝑖(𝑡)|

2

𝑁

𝑖=1

)
𝑒𝑖
2(𝑡 + 1)

𝑟𝑖(𝑡)
.

𝑛

𝑡=0

 

Since by assumption 𝜇𝑖 <
2

𝛽𝑖𝑚𝑎𝑥
 and the step 

size 𝜇𝑖 satisfies 1 −
𝜇𝑖 |𝛽𝑖(𝑡)|

2
> 0, we have 

2 min
1≤𝑖≤𝑁

{𝜇𝑖 𝛽𝑖𝑚𝑖𝑛 (1 −
𝜇𝑖𝛽𝑖𝑚𝑎𝑥
2

)}∑∑
𝑒𝑖
2(𝑡 + 1)

𝑟𝑖(𝑡)

𝑁

𝑖=1

𝑛

𝑡=0

 

≤ 2∑∑𝜇𝑖|𝛽𝑖(𝑡)| (1 −
|𝛽𝑖(𝑡)|𝜇𝑖

2
)
𝑒𝑖
2(𝑡 + 1)

𝑟𝑖(𝑡)
 

𝑁

𝑖=1

𝑛

𝑡=0
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       ≤ 𝐿(0) − 𝐿(𝑛 + 1). 

Hence 

∑∑
𝑒𝑖
2(𝑡 + 1)

𝑟𝑖(𝑡)

𝑁

𝑖=1

𝑛

𝑡=0

 

≤
𝐿(0) − 𝐿(𝑛 + 1)

2 min
1≤𝑖≤𝑁

{𝜇𝑖  𝛽𝑖𝑚𝑖𝑛(1 −
𝜇𝑖𝛽𝑖𝑚𝑎𝑥
2

)}
= 𝑘1 < ∞ 

for some positive constant 𝑘1. Define �̅�(𝑡) =

1 + ∑ ∑ ‖𝝋𝑖(𝑘)‖
2𝑡

𝑘=0
𝑁
𝑖=1 . Since �̅�(𝑡) ≥ 𝑟𝑖(𝑡) 

for 1 ≤ 𝑖 ≤ 𝑁 and ‖𝒆(𝑡 + 1)‖2 =

∑ 𝑒𝑖
2(𝑡 + 1)𝑁

𝑖=1 , the previous relation implies 

∑
‖𝒆(𝑡 + 1)‖2

�̅�(𝑡)

𝑛

𝑡=0

≤∑∑
𝑒𝑖
2(𝑡 + 1)

𝑟𝑖(𝑡)

𝑁

𝑖=1

𝑛

𝑡=0

 

 ≤ 𝑘1 < ∞.                      (3-18) 

Then ∑
‖𝒆(𝑡+1)‖2

�̅�(𝑡)
𝑛
𝑡=0  is convergent. 

Since from Eqs. (2-6) and (3-8), ‖𝝋𝑖(𝑡)‖ ≤

‖𝚽𝑖(𝑡)‖, ∀𝑡 ≥ 0, we have 𝑟𝑖(𝑡) ≤ 1 +

‖𝚽𝑖(𝑡)‖
2. Then Lemma 3-1 implies that for 

some positive constant 𝑐, 

�̅�(𝑛) ≤ 1 +∑∑‖𝚽𝑖(𝑡)‖
2

𝑛

𝑡=0

𝑁

𝑖=1

 

          ≤ 1 + 𝑐𝑁∑‖𝒆(𝑡 + 1)‖2.

𝑛

𝑡=0

 

(3-19) 

If lim
𝑛→∞

�̅�(𝑛) = ∞, by Kronecker’s Lemma 

[26, p. 503], one can derive 

lim
𝑛→∞

1

�̅�(𝑛)
∑ ‖𝒆(𝑡 + 1)‖2 = 0.𝑛
𝑡=0  Hence there 

exists 𝑁1 such that ∑ ‖𝒆(𝑡 + 1)‖2𝑛
𝑡=0 ≤

�̅�(𝑛)

2𝑐𝑁
, 

for 𝑛 ≥ 𝑁1. Then Eq. (3-19) follow 

∑ ‖𝒆(𝑡 + 1)‖2𝑛
𝑡=0 ≤

1

2𝑐𝑁
+
1

2
∑ ‖𝒆(𝑡 + 1)‖2𝑛
𝑡=0  

or ∑ ‖𝒆(𝑡 + 1)‖2𝑛
𝑡=0 ≤

1

𝑐𝑁
, for 𝑛 ≥ 𝑁1, which 

gives ∑ ‖𝒆(𝑡 + 1)‖2𝑛
𝑡=0 ≤ 𝑘2, for all n. 

On the other hand, {�̅�(𝑛)} is non-increasing. 

Thus if  lim
𝑛⟶∞

�̅� (𝑛) = �̅� , then �̅�(𝑛) ≤ �̅� and 

from Eq. (3-18) we can derive 
∑ ‖𝒆(𝑡+1)‖2𝑛
𝑡=0

�̅�
≤ ∑

‖𝒆(𝑡+1)‖2

�̅�(𝑡)
𝑛
𝑡=0 ≤ 𝑘1 < ∞, and 

this proves Statement (1). Statement (2) is a 

consequence of Statement (1) and Lemma 

1. Observe that Lemma 1 and Statement (1) 

yield ∑ ‖𝜑𝑖(𝑡)‖
2𝑛

𝑡=0 < ∞, ∀ 𝑛 ≥ 0, 𝑖 ∈ 𝑉. 

This relation together with (3-8) implies 

Statement (3). Note that Statement (3) is 

stronger than wide-sense consensus and it 

implies 

lim
𝑡 → ∞

𝑣𝑗(𝑡) − 𝑣𝑖(𝑡) = 0, ∀𝑖, 𝑗 ∈ 𝑉. 

We now prove that the parameter sequence 

{𝜃𝑖𝑗(𝑡)}𝑡≥0, 𝑡 ≥ 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, has a limit. 

From Eq. (3-16), we have 

�̃�𝑖𝑗(𝑘 + 1)𝐼𝑖𝑗 = �̃�𝑖𝑗(𝑘)𝐼𝑖𝑗 

−
𝜇𝑖
𝑟𝑖(𝑘)

|𝛽𝑖(𝑘)| 𝜀𝑖𝑗(𝑘)𝑒𝑖(𝑘 + 1) 

After summing both sides of the previous 

equation from 𝑘 = 0 to 𝑘 = 𝑛, it follows that 

�̃�𝑖𝑗(𝑡 + 1)𝐼𝑖𝑗 = �̃�𝑖𝑗(0) 𝐼𝑖𝑗                      (3-20) 

−∑  
𝜇𝑖 

𝑟𝑖(𝑘)
|𝛽𝑖(𝑘)| 𝜀𝑖𝑗(𝑘)𝑒𝑖(𝑘 + 1).

𝑡
𝑘=0             

Consider now an infinite series 𝑅𝑖𝑗 defined 

by  

𝑅𝑖𝑗(𝑡) = ∑
𝛽𝑖(𝑘) 𝜀𝑖𝑗(𝑘) 𝑒𝑖(𝑘 + 1)

𝑟𝑖(𝑘)
.

𝑡

𝑘=0

 

Since by Eqs. (2-6) and (3-8), |𝜀𝑖𝑗(𝑘)| ≤

‖𝝋𝑖(𝑘)‖ ≤ ‖𝚽𝑖(𝑘)‖, we have 

∑|
𝛽𝑖(𝑘) 𝜀𝑖𝑗(𝑘) 𝑒𝑖(𝑘 + 1)

𝑟𝑖(𝑘)
|

𝑡

𝑘=0

≤ 𝛽𝑖𝑚𝑎𝑥∑‖𝚽𝑖(𝑘)‖|𝑒𝑖(𝑘 + 1)|

𝑡

𝑘=0

 

where we used the fact that 𝑟𝑖(𝑘) ≥ 1. Then 

from the recent equation and Cauchy-

Schwartz's inequality, it follows that 
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∑|
𝛽𝑖(𝑘) 𝜀𝑖𝑗(𝑘) 𝑒𝑖(𝑘 + 1)

𝑟𝑖(𝑘)
|

𝑡

𝑘=0

 

≤ 𝛽𝑖𝑚𝑎𝑥(∑‖𝚽𝑖(𝑘)‖
2)

𝑡

𝑘=0

1
2

(∑|𝑒𝑖(𝑘 + 1)|
2)

𝑡

𝑘=0

1
2

≤ 𝑘3

< ∞ 

for 1 ≤ 𝑖, 𝑗 ≤ 𝑁. Thus the infinite series 𝑅𝑖𝑗 

is absolutely convergent. Hence, Eq. (3-20) 

implies that 

lim
𝑡⟶∞

�̃�𝑖𝑗(𝑡 + 1)𝐼𝑖𝑗 = �̃�𝑖𝑗(0)𝐼𝑖𝑗 − 𝜇𝑖 lim
𝑡→∞

𝑅𝑖𝑗(𝑡). 

Hence lim
𝑡⟶∞

�̃�𝑖𝑗(𝑡 + 1) or lim
𝑡⟶∞

�̃�𝑖𝑗(𝑡) exists, 

where it follows that lim
𝑡⟶∞

𝜽𝑖(𝑡) exists. It 

proves Statement (4) of the theorem.  

Remark. The stability analysis in case of the 

unknown control directions can be a fairly 

complex task algebraically. For the sake of 

presenting clear and easy to follow proofs, 

we investigated our analysis by considering 

the case of known sign of the parameter 

𝛽𝑖(𝑡) in (2.2). Practically, if multiple agents 

such as robots are produced in batches, then 

it is reasonable to assume that all agents 

have similar models and the same control 

directions. Therefore, it is reasonable that 

the control directions of all agents (i.e., 

signs of) are the same. It should be 

mentioned that the gradient-based protocol 

presented in (3-6) cannot handle the case of 

the unknown sign of parameter 𝛽𝑖(𝑡). 

 

We now turn to Eqs. (3-2) and (3-3). 

Observe that from Eq. (3-3), Lemma 3-2 

and boundedness |𝛽𝑖(𝑡)|, it follows 

limsup 𝑡→∞𝐖(𝑡) = �̅�, where 

�̅� = [�̅�𝑖𝑗],    

�̅�𝑖𝑗 =

{
 
 

 
 𝛽�̅� �̅�𝑖𝑗,                           𝑗 ∈ 𝒩𝑖

1 − ∑ 𝛽�̅� �̅�𝑖𝑗 ,

𝑗∈𝒩𝑖

          𝑗 = 𝑖

0,                           otherwise.

 

Hence from Eq. (3-2) we can write 𝐯(𝑡 +

1) = �̅� 𝐯(𝑡) + �̃�(𝑡)𝐯(𝑡), with �̃�(𝑡) =

𝐖(𝑡) − �̅�, and thus limsup 𝑡→∞�̃�(𝑡) = 0. In 

sequence, we prove 𝐖(𝑡) and �̅� are 

nonnegative matrices provided that the 

following constraint is fulfilled on the initial 

conditions 𝛉𝑖(0),  𝑖 ∈ V. 

Assumption 3-3. In (3-6), θij(0) is selected 

so that 0.5 < 𝛼𝑖 < 1 and 

0 < 𝜃𝑖𝑗(0) 𝑠𝑔𝑛(𝛽𝑖(0)) 

<
(2𝑁𝑖 + 3)(1 − 𝛼𝑖)

2(1 + 𝑁𝑖)
2 max
1≤𝑖≤𝑁

{|𝛽𝑖(0)|}
, 𝑗 ∈ 𝒩𝑖 , 

0 < 𝜃𝑖𝑗(0) 𝑠𝑔𝑛(𝛽𝑖(0)) 

<
(1 − 𝛼𝑖)

2(1 + 𝑁𝑖)√𝑁 − 𝑁𝑖 max
1≤𝑖≤𝑁

{|𝛽𝑖(0)|}
, 𝑗 ∉ 𝒩𝑖 . 

 

Recall that 𝛼𝑖 is a parameter defining the 

weight of 𝑣𝑖(𝑡) in the average �̿�𝑖(𝑡) given by 

Eq. (3-5). After squaring up both sides of 

Eq. (3-16) and summing up from 𝑗 = 1 to 

𝑗 = 𝑁, it follows that 

∑�̃�𝑖𝑗
2 (𝑡 + 1)

𝑁

𝑗=1

=∑�̃�𝑖𝑗
2 (𝑡)

𝑁

𝑗=1

 

−
2𝜇𝑖
𝑟𝑖(𝑡)

|𝛽𝑖(𝑡)| 𝑒𝑖(𝑡 + 1)∑�̃�𝑖𝑗(𝑡)𝜀𝑖𝑗(𝑡)

𝑁

𝑗=1

 

+
𝜇𝑖
2

𝑟𝑖
2(𝑡)

𝛽𝑖
2(𝑡) 𝑒𝑖

2(𝑡 + 1)∑𝜀𝑖𝑗
2 (𝑡).

𝑁

𝑗=1

 

Then from Eqs. (2-5), (2-6) and (3-17) we 

derive 

 

‖�̃�𝑖(𝑡 + 1)‖
2
= ‖�̃�𝑖(𝑡)‖

2
−
2𝜇𝑖
𝑟𝑖(𝑡)

|𝛽𝑖(𝑡)|𝑒𝑖
2(𝑡 + 1) 

+
𝜇𝑖
2

𝑟𝑖
2(𝑡)

𝛽𝑖
2(𝑡) ‖𝛗𝒊(𝑡)‖

2𝑒𝑖
2(𝑡 + 1) 
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≤ ‖�̃�𝑖(𝑡)‖
2
−
2𝜇𝑖
𝑟𝑖(𝑡)

|𝛽𝑖(𝑡)|𝑒𝑖
2(𝑡 + 1) 

+
𝜇𝑖
2

𝑟𝑖(𝑡)
𝛽𝑖
2(𝑡) 𝑒𝑖

2(𝑡 + 1) 

= ‖�̃�𝑖(𝑡)‖
2
−
2𝜇𝑖
𝑟𝑖(𝑡)

|𝛽𝑖(𝑡)| (1 −
𝜇𝑖|𝛽𝑖(𝑡)|

2
) 𝑒𝑖

2(𝑡 + 1) 

Hence, in view of 𝜇𝑖 < 
2

𝛽𝑖𝑚𝑎𝑥
, we obtain 

‖�̃�𝑖(𝑡 + 1)‖
2
≤ ‖�̃�𝑖(𝑡)‖

2
. Therefore 

‖�̃�𝑖(𝑡)‖
2
≤ ‖�̃�𝑖(0)‖

2
. On the other hands, 

according to Assumption 3-3,  

0 < 𝜃𝑖𝑗(0) 𝑠𝑔𝑛(𝛽𝑖(0)) < 

(2𝑁𝑖+3)(1−𝛼𝑖)

2(1+𝑁𝑖)
2 max
1≤𝑖≤𝑁

{|𝛽𝑖(0)|}
, 𝑗 ∈ 𝒩𝑖.  

Then 0 < 𝜃𝑖𝑗(0)𝛽𝑖(0) <
(2𝑁𝑖+3)(1−𝛼𝑖)

2(1+𝑁𝑖)
2  or 

�̃�𝑖𝑗(0) = 𝛽𝑖(0)𝜃𝑖𝑗(0) −
1−𝛼𝑖

1+𝑁𝑖
<

(1−𝛼𝑖)

2(1+𝑁𝑖)
2, 

   𝑗 ∈ 𝒩𝑖.  

Also, 0 < 𝜃𝑖𝑗(0) 𝑠𝑔𝑛(𝛽𝑖(0)) < 

(1−𝛼𝑖)

2(1+𝑁𝑖)√𝑁−𝑁𝑖 max
1≤𝑖≤𝑁

{|𝛽𝑖(0)|}
, 𝑗 ∉ 𝒩𝑖.  

Then  

0 < 𝛽𝑖(0)𝜃𝑖𝑗(0) − 0 <
(1−𝛼𝑖)

2(1+𝑁𝑖)√𝑁−𝑁𝑖
  or 

0 < �̃�𝑖𝑗(0) <
(1−𝛼𝑖)

2(1+𝑁𝑖)√𝑁−𝑁𝑖
,   𝑗 ∉ 𝒩𝑖.  

It follows that 

�̃�𝑖𝑗
2 (𝑡) ≤ ‖�̃�𝑖(𝑡)‖

2
≤ ‖�̃�𝑖(0)‖

2
=∑�̃�𝑖𝑗

2 (0)

𝑁

𝑗=1

 

= ∑ (�̃�𝑖𝑗(0))
2

𝑗∈𝒩𝑖

+ ∑ (�̃�𝑖𝑗(0))
2

𝑗∉𝒩𝑖

 

 ≤ ∑
(1 − 𝛼𝑖)

2

4(1 + 𝑁𝑖)
4

𝑗∈𝒩𝑖

+ ∑
(1 − 𝛼𝑖)

2

4(1 + 𝑁𝑖)
2(𝑁 − 𝑁𝑖)

𝑗∉𝒩𝑖

 

≤
(1 − 𝛼𝑖)

2

4(1 + 𝑁𝑖)
2
+
(1 − 𝛼𝑖)

2

4(1 + 𝑁𝑖)
2
<
(1 − 𝛼𝑖)

2

(1 + 𝑁𝑖)
2
. 

for all 𝑖 ∈ 𝑉, 𝑗 ∈ 𝒩𝑖. Hence 

 �̃�𝑖𝑗
2 (𝑡) <

(1−𝛼𝑖)
2

(1+𝑁𝑖)
2 , 𝑗 ∈ 𝒩𝑖, or 

 (𝛽𝑖(𝑡)𝜃𝑖𝑗(𝑡) −
1−𝛼𝑖

1+𝑁𝑖
)
2
<

(1−𝛼𝑖)
2

(1+𝑁𝑖)
2.  

Therefore 𝛽𝑖
2(𝑡)𝜃𝑖𝑗

2 (𝑡) −
2(1−𝛼𝑖)

1+𝑁𝑖
𝛽𝑖(𝑡)𝜃𝑖𝑗(𝑡) +

(1−𝛼𝑖)
2

(1+𝑁𝑖)
2 <

(1−𝛼𝑖)
2

(1+𝑁𝑖)
2 or 0 < 𝛽𝑖

2(𝑡)𝜃𝑖𝑗
2 (𝑡) <

2(1−𝛼𝑖)

1+𝑁𝑖
𝛽𝑖(𝑡) 𝜃𝑖𝑗(𝑡), for all 𝑗 ∈ 𝒩𝑖. It implies 

that 𝛽𝑖(𝑡)𝜃𝑖𝑗(𝑡) > 0 and 𝛽𝑖(𝑡)𝜃𝑖𝑗(𝑡) <
2(1−𝛼𝑖)

1+𝑁𝑖
.  

On the other hands,  

1 − ∑ 𝛽𝑖(𝑡)𝜃𝑖𝑗(𝑡)

𝑗∈𝒩𝑖

> 1 − ∑
2(1 − 𝛼𝑖)

1 + 𝑁𝑖
𝑗∈𝒩𝑖

 

= 1 −
2𝑁𝑖(1 − 𝛼𝑖)

1 + 𝑁𝑖
> 2𝛼𝑖 − 1 > 0. 

Thus, all matrix components of 𝐖(t) are 

nonnegative. i.e. 𝑤𝑖𝑗(𝑡) ≥ 0. Also �̅�𝑖�̅�𝑖𝑗 ≥ 0 

and �̅�𝑖�̅�𝑖𝑗 ≤
2(1−𝛼𝑖)

1+𝑁𝑖
,   1 ≤ 𝑖 ≤ 𝑁. Thus �̅� is a 

nonnegative matrix. Since by construction it 

is a row stochastic matrix, 𝜆1 = 1 is its 

maximal eigenvalue and 𝒍𝑇 = [1,… ,1] is its 

right eigenvector [25, p. 527]. By the fact 

that the corresponding graph is strongly 

connected, �̅� is an irreducible matrix [25, 

Theorem 6.2.24, p. 362]. Then by the 

Perron–Frobenius theorem for nonnegative 

matrices, 𝜆1 = 1 is an algebraically simple 

eigenvalue [25, Theorem 8.4.4, p. 508]. 

Since �̅�𝑖𝑖 = 1 − ∑ 𝛽�̅��̅�𝑖𝑗 > 0 𝑗𝜖𝒩𝑖
 it follows 

that �̅� is a primitive matrix, i.e. it has only 

one eigenvalue of maximum modulus [25, 

Theorems 8.5.2, p. 516 and 8.5.10, p. 520].  

It is obvious that 𝒍𝑇 = [1,… ,1] is the right 

eigenvector of �̅� corresponding to 𝜆1 = 1. 

Let 𝒚2 be the left eigenvector associated to 

the eigenvalue 𝜆1 = 1 and normalized so 

that 𝒍𝑇𝒚2 = 1. Based on the above 
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discussion matrix �̅� can be decomposed 

into �̅� = 𝐖1 + 𝒍
𝑇𝒚2, where  

𝐖1𝒍 = 0,   𝐖1
𝑇𝒚2 = 0,    and   𝜌(𝐖1) < 1 

(3-21) 

with 𝜌(𝐖1) being the spectral radius of 𝐖1. 

In the following, we show that the MAS 

achieves consensus and all agent velocities 

converge to the average of initial velocity 

values. In addition, the distance between 

any two members of the group converges 

toward a finite limit. 

Theorem 3-4. Let the underlying directed 

graph G is strongly connected. Also, let the 

sign of 𝛽𝑖 in Eq. (2-2) and the upper bound 

𝛽𝑖𝑚𝑎𝑥 of |𝛽𝑖(𝑡)| are known to agent i and the 

lower bound 𝛽𝑖𝑚𝑖𝑛 of |𝛽𝑖(𝑡)| is nonzero. The 

step size 𝜇𝑖 in Eq. (3-6) satisfies 𝜇𝑖 <
2

𝛽𝑖𝑚𝑎𝑥
, 

for all 1 ≤ 𝑖 ≤ 𝑛. Also, let Assumptions (3-

3) hold. Then  

(1) lim
𝑡→∞

𝑣𝑖(𝑡) =
∑ 𝑣𝑖(0)
𝑁
𝑖=1

𝑁
,     1 ≤ 𝑖 ≤ 𝑁 

(2) lim (
𝑡→∞

𝑥𝑗 (𝑡) − 𝑥𝑖(𝑡)) = �̅�𝑖𝑗 , |�̅�𝑖𝑗| < ∞ 

for all 1 ≤ 𝑖 , 𝑗 ≤ 𝑁. 

Proof. Let 

𝒛(𝑡 + 1) = 𝐯(𝑡 + 1) − 𝒍𝒚2
𝑇𝐯(𝑡)            (3-22) 

where 𝒚2 is the left eigenvector of �̅� 

corresponding to 𝜆1 = 1. We first show that 

‖𝒛(𝑡 + 1)‖ ≤ 𝑐𝜌𝑡, for some 0 < 𝜌 < 1  and 

0 < c < ∞. To prove this claim, after 

substituting �̅� = 𝐖1 + 𝒍
𝑇𝒚2 in 𝐯(𝑡 + 1) =

�̅� 𝐯(𝑡) + �̃�(𝑡)𝐯(𝑡) we obtain 𝐯(𝑡 + 1) =

𝐖1𝐯(𝑡) + 𝒍𝒚2
𝑇𝐯(𝑡) + �̃�(𝑡)𝐯(𝑡). Since   

𝐖1𝒍 = 0 and �̃�(𝑡)𝒍 = (𝐖(𝑡) − �̅�)𝒍 = 0, it 

follows that 

𝒛(𝑡 + 1) = 𝐖1𝐯(𝑡) + �̃�(𝑡)𝐯(𝑡)

= 𝐖1 (𝒛(𝑡) + 𝒍𝒚2
𝑇𝐯(𝑡 − 1))

+ �̃�(𝑡) (𝒛(𝑡) + 𝒍𝒚2
𝑇𝐯(𝑡 − 1))

= (𝐖1 + �̃�(𝑡)) 𝒛(𝑡). 

Then 𝒛(𝑡 + 1) = ∏ (𝐖1 + �̃�
𝑡
𝑘=1 (𝑘))𝒛(1). 

By assumption 𝑻(𝑡 + 1, 𝑛) = ∏ (𝐖1 +
𝑡
𝑘=𝑛

�̃�(𝑘)),  the previous equation can be written 

𝒛(𝑡 + 1) = 𝑻(𝑡 + 1,1)𝒛(1). By using [27, 

Lemma A.2.13, p. 310], there exits 0 < 𝜌 <

1 such that ‖𝑻(𝑡 + 1, 𝑛)‖ ≤ 𝑐 𝜌𝑡+1−𝑛, for 𝑡 ≥

𝑛. Hence 

‖𝒛(𝑡 + 1)‖ = ‖𝑻(𝑡 + 1,1)‖‖𝒛(1)‖ 

≤ 𝑐𝜌𝑡  ‖𝒛(1)‖ = 𝑐′𝜌𝑡         (3-23) 

for 𝑡 > 0. From (3-22) 

𝐯(𝑡 + 1) = 𝒛(𝑡 + 1) + 𝒍𝒚2
𝑇𝐯(𝑡) 

= 𝒛(𝑡 + 1) + 𝒍𝒚2
𝑇(𝒛(𝑡) + 𝒍𝒚2

𝑇𝐯(𝑡 − 1)) 

= (𝒍𝒚2
𝑇)𝟐 𝐯(𝑡 − 1) + ∑ (𝒍𝒚2

𝑇)𝒕−𝒌 
𝑡

𝑘=𝑡−1

𝒛(𝑘 + 1) 

= ⋯ = (𝒍𝒚2
𝑇)𝒕+𝟏 𝐯(0) +∑(𝒍𝒚2

𝑇)𝒕−𝒌 
𝑡

𝑘=0

𝒛(𝑘 + 1) 

where 𝑷 =  𝒍𝒚2
𝑇 is an idempotent matrix, i.e. 

𝑷𝑘 = 𝑷, 𝑘 ≥ 1. Then, the above relation can 

be written as follows 

𝐯(𝑡 + 1) = 𝑷 𝐯(0) + 𝑷∑𝒛(𝑘 + 1) + 𝒛(𝑡 + 1)

𝑡−1

𝑘=0

. 

Since by Eq. (3-23) ∑ 𝒛(𝑘 + 1)∞
𝑘=0  is an 

absolutely convergent series, the recent 

equation implies that lim
𝑡→∞

𝐯(𝑡) exists. 

Furthermore, Eq. (3-2) implies that 𝒍𝑇𝐯(𝑡 +

1) = 𝒍𝑇𝐯(𝑡) = ⋯ =  𝒍𝑇𝐯(0). 

On the other hands, from Eq. (3-8) together 

with Statement (2) of Lemma 3-2, we can 

derive lim
𝑡→∞

𝐯(𝑡) − 𝑣𝑖(𝑡)𝒍 = 0 or   
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lim
𝑡→∞

𝒍𝑇𝐯(𝑡) − 𝑣𝑖(𝑡) 𝒍
𝑇𝒍 = 0. Since 𝒍𝑇 𝒍 = 𝑁 it 

follows that 

lim
𝑡→∞

𝑣𝑖(𝑡) =
𝒍𝑇𝐯(0)

𝑁
=
∑ 𝑣𝑖(0)
𝑁
𝑖=1

𝑁
 , 

𝑖 = 1, 2, … ,𝑁. This proves Statement (1). 

Next we show the validity of Statement (2). 

From Eq. (2-1) it follows that 

𝑥𝑖(𝑡 + 1) − 𝑥𝑗(𝑡 + 1) = 𝑥𝑖(0) − 𝑥𝑗(0) +

∑ (𝑣𝑖(𝑘) − 𝑣𝑗(𝑘)),      ∀𝑖, 𝑗 ∈ 𝑉
𝑡+1
𝑘=1 . 

Obviously we need to demonstrate that the 

partial sum on the right hand side of the 

previous equation is convergent. From Eq. 

(3-22) we can write 𝑧𝑖(𝑡 + 1) = 𝑣𝑖(𝑡 + 1) −

𝒚2
𝑇𝑣(𝑡), 𝑖 ∈ 𝑉, where 𝑧𝑖(𝑡) is the ith 

component of the vector 𝑧(𝑡). Hence 

𝑣𝑖(𝑡 + 1) − 𝑣𝑗(𝑡 + 1) = 𝑧𝑖(𝑡 + 1) − 𝑧𝑗(𝑡 +

1), for all 𝑖, 𝑗 ∈ 𝑉. Then from Eq. (3-23) one 

obtains 

|𝑣𝑖(𝑡 + 1) − 𝑣𝑗(𝑡 + 1)| 

        ≤ |𝑧𝑖(𝑡 + 1)| + |𝑧𝑗(𝑡 + 1)| 

≤ ‖𝒛(𝑡 + 1)‖ + ‖𝒛(𝑡 + 1)‖ ≤ 2𝑐′𝜌𝑡. 

Then ∑ (𝑣𝑖(𝑘) − 𝑣𝑗(𝑘))
∞
𝑘=1  is an absolutely 

convergent series and it implies that 

lim
𝑡⟶∞

𝑥𝑖(𝑡) − 𝑥𝑗(𝑡) exists. Thus the theorem 

is proved. 

4- Simulation experiment 

Consider a network of seven agents 

characterized by a directed graph whose 

topology is defined by the following 

adjacency matrix 

𝐴𝑑 =

[
 
 
 
 
 
 
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 1
0 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
1 1 0 1 0 1 0]

 
 
 
 
 
 

 

𝐴𝑑(𝑖, 𝑗) = 1 signifies that agent i directly 

receives information from agent j. 𝐴𝑑(𝑖, 𝑗) =

0 means that agent i cannot receive any 

information from agent j. Let 𝛽(𝑡) =

[𝛽1(𝑡)… 𝛽𝑁(𝑡)] be a vector with 𝛽𝑖(𝑡) being 

parameters from Eq. (3-1) and they are 

defined as follow 

𝛽1(𝑡) = 1 + 0.6  sin (
𝜋

100
𝑡), 

𝛽2(𝑡) = −1 − 0.4  cos (
𝜋

100
𝑡), 

𝛽3(𝑡) = 1 − 0.5  cos (
𝜋

100
𝑡), 

𝛽4(𝑡) = −0.45 + 0.3 sin (
𝜋

100
𝑡), 

𝛽5(𝑡) = 0.8 + 0.5  cos (
𝜋

100
𝑡), 

𝛽6(𝑡) = 0.70 + 0.6  cos (
𝜋

100
𝑡), 

𝛽7(𝑡) = 0.2 +  0.1 sin (
𝜋

100
𝑡). 

Initial states of the model (3-1) and (3-2) are 

selected as 𝑥𝑖(0) = 0.5 × (−2)
𝑖+1 and 

𝑣𝑖(0) = 𝑖(−1)
𝑖, 𝑖 = 1, 2, … , 7. In Eq. (3-6) 

the algorithm step size is set to 𝜇𝑖 =

0.95, 𝑖 = 1, 2, … , 7. Fig. 1 shows that all 

velocities 𝑣𝑖(𝑡), 𝑖 = 1, 2, … , 7, converge to 

the same value (-0.5714), where is equal to 

the average of the initial velocities. 

 

Fig. 1 Convergence of agent velocities vi(t). 
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Fig. 2 illustrates that the distance between 

the third and the sixth agent converges to a 

constant and all agents move in its own 

direction with the same distance. 

Fig. 3 shows that the coupling parameters 

are convergent, where they are locally self-

tuned by using normalized gradient 

algorithm.  

 

Fig. 2 Evolution of distance between the 3rd and 

6th agent. 

 

 

Fig. 3 Evolution of the parameter vector θ3(t) and 

θ5(t). 

 

Fig. 4 depicts the consensus protocol that it 

causes the convergence of velocity and state 

and it converges to zero. 

5- Conclusion 

Emergence of a synchronized collective 

behavior in MASs is a topic of significant 

interest in various fields of science and 

engineering. Focal point of study in multi- 

 

Fig. 4 The convergence of the control signal of the 

agents. 

agent coordination is understanding the 

consensus phenomenon where a number of 

autonomous agents reach a state of 

agreement. This intriguing phenomenon of 

collective behavior is observed in natural 

and manmade systems in biology, 

chemistry, physics and engineering, as well 

as in the art and social contexts. 

In this paper we considered a multi agent 

networked system where the coupling 

parameters are locally tuned. Each node 

locally tunes its coupling parameters by 

using normalized gradient algorithm (NGA) 

recursion. Provided that the network graph 

is strongly connected, it is shown that the 

coupling parameter sequence converges. 

Also, under additional constraints specified 

by Assumption 3-3, it is proved that all 

agent velocities converge toward the same 

constant value, and this value, in contrast to 

[17], is the average of initial velocities; i.e. 

the network achieves average consensus. In 

addition, it is shown that the distance 

between any two members of the group 

converges. Finally, theoretically derived 

conclusions are confirmed by simulation 

results and figures. 

In spite of the extensive research works on 

consensus, still there are many unresolved 

challenges and issues. On the one hand, 

most of the research efforts in this field are 
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focused on the theoretical studies and the 

results of the developments and innovations 

in this area are mainly verified through 

simulation and less attention is paid to 

hardware implementation. While in the 

actual implementation of a MAS, different 

factors such as presence of noise and delay 

in transmission channels and information 

exchange between agents, communication 

interferences, and the external disturbances 

will adversely affect the system and disrupt 

its operation. On the other hand, because of 

the high complexity of some subjects, either 

they have been totally ignored by the 

researchers or seldom explored even in the 

theoretical studies. There seems to be a deep 

void in the studies related to the mentioned 

research themes and especially the high-

order nonlinear nonhomogeneous networks 

with the switching topology and in the 

presence of delay and noise. Hopefully, 

more researchers will attempt to study the 

stated subjects in their future works, and we 

will witness the actual implementation of 

consensus in the real-world applications. 
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