Friction Stir Welding؛ Material Flow؛ Heat Generation؛ Thermal Simulation؛ Poly methyl methacrylate (PMMA)

Document Type: Persian

Author

Islamic Azad University, Science and Research Branch, Young Researchers and Elite Club, Tehran, Iran

Abstract

In this study, the effects of linear and rotational speed of the friction stir welding tool was investigated on the heat generation and distribution at surface and inside of workpiece, material flow and geometry of the welding area of poly methyl methacrylate (PMMA) workpiece. The commercial CFD Fluent 6.4 software was used to simulation of the process with computational fluid dynamic technique. To increase the accuracy of simulation, weld area was modeled as a non-Newtonian fluid with pseudo melt behavior around tool pin. The results of the simulation showed at the higher the proportion of rotational speed to linear speed, the material flow in front of the tool and the welding region became bigger. The maximum temperature and turbulence generated heat and material flow were observed at the advancing side. The simulation results were showed acceptable agreement with experimental results. Based on the studied parameters, the maximum generated heat was of 115° C, the maximum material velocity was 0.24 m/s around tool shoulder and maximum pressure on the workpiece was predicted 9 MPa.

Keywords


 [1] آقاجانی درازکلا ح، الیاسی م، حسین­زاده م، بررسی تاثیر حرارت تولید شده در فرآیند جوشکاری اصطکاکی اغتشاشی برروی کیفیت اتصال آلومینیوم به فولاد، مجله مهندسی مکانیک مدرس، دوره 15، 1394، شماره 4، ص­ص 379-390.

[2]Aghajani Derazkola H., Jamshidi Aval H., Elyasi M., Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel, Science and Technology of Welding and Joining, vol.20, 2015, pp. 553-562.

[3] Bagheri A, Azdast T, Doniavi A, An experimental study on mechanical properties of friction stir welded ABS sheets, Materials and Design, vol. 43, 2013, pp. 402–409.

[4] Mendes N., Neto P., Simão M. A., Loureiro A., Pires J. N., A novel friction stir welding robotic platform: welding polymeric materials, The International Journal of Advanced Manufacturing Technology, vol. 12, 2014, pp. 1-10.

[5] Mendes N., Loureiro A., Martins C., Neto P., Pires J. N., Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds, Materials and Design, vol. 58, 2014, pp. 457–464.

[6] Simões F., Rodrigues D. M., Material flow and thermo-mechanical conditions during Friction Stir Welding of polymers: literature review, experimental results and empirical analysis, http://dx.doi.org/10.1016/j.matdes.2013.12.038

[7] Azarsa E., Mostafapour A., Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets, Journal of Manufacturing Processes, vol. 16, 2014, pp. 149–155.

[8] Bozkurt Y., The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets, Materials and Design, vol. 35, 2012, pp. 440–445.

[9] Panneerselvam K., Lenin K., Joining of Nylon 6 plate by friction stir welding process using threaded pin profile, Materials and Design, vol. 53, 2014, pp. 302–307.

[10] Smith C., Bendzsak G., North T., Hinrichs J., Noruk J., Heideman R., Heat and Material Flow Modeling of the Friction Stir Welding Process, 11th International Conference on Computer Technology in Welding, Detroit, United State, 1999.

[11] North T., Bendzsak G., Smith C., Material Properties Relevant to 3-D Modeling, 2nd International Friction Stir Welding Symposium, Gothenburg, Sweden, 2000.

[12] Seidel T. U., Reynolds A. P., Two-dimensional friction stir welding process model based on fluid mechanics, Science and Technology of Welding and Joining, vol. 8, 2003, pp. 175-183.

[13] Zhang W., DebRoy T., Palmer T. A., Elmer J. W., Modeling of ferrite formation in a duplex stainless steel weld considering non-uniform starting microstructure, Acta Materialia, vol. 53, no.16, 2005, pp. 4441–4453.

[14] Nandan R., Roy G., DebRoy T., Numerical simulation of three dimensional heat transfer and plastic flow during friction stir welding, Metallurgical and Materials Transactions A, vol. 37, no. 4, 2006, pp. 1247–1259.

[15] Nandan R., Roy G., Lienert T., DebRoy T., Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel, Science and Technology of Welding and Joining, vol. 11, no. 5, 2006, pp.526-537.

[16] Nassar H. W., Khraisheh M. K., Simulation of Material Flow and Heat Evolution in Friction Stir Processing Incorporating Melting, Journal of Engineering Materials and Technology, vol. 134, 2012, pp. 61-67.

[17] Ji S.D., Shi Q.Y., Zhang L.G., Zou A. L., Gao S.S., Zan L.V., Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry, Computational Materials Science, vol. 63, 2012, pp. 218–226.

[18] آقاجانی درازکلا ح، جمشیدی اول ح، حبیب­نیا م، بررسی رفتار حرارت حاصل از اصطکاک و جریان مواد در جوشکاری اصطکاکی اغتشاشی آلومینیوم AA1100، مجله مهندسی مکانیک مدرس، دوره 14،  1393، شماره 14، ص ص 251-261.

[19]  Polymer Data Handbook, Edited by James Mark, Oxford University Press, 1999.

[20]  Zhang J., Shen Y., Li B., Xu H., Yao X., Kuang B., Gao J., Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy, Materials and Design, vol. 60, 2014, pp. 94–101.