[1] H. Zhang, W. Wen, and H. Cui, “Study on the strength prediction model of Comeld composites joints,” Compos. Part B Eng., vol. 43, no. 8, pp. 3310–3317, Dec. 2012.
[2] E. Nwankwo, “Dynamic Behaviour of Blast Loaded Hybrid Structural Systems,” no. March, 2014.
[3] J. Khodorkovsky and V. Shkolnikov, “Advanced Hybrid Joining Technology Phase I STTR Results,” vol. 25, no. 3, 2009.
[4] V. Di Giandomenico, “Surface structured bonded composite-metal joint,” Igarss 2014, no. 1, pp. 1–5, 2014.
[5] D. E. Rick Martin, “Reducing Costs in Aircraft: The Metals Affordability Initiative Consortium,” JOM, 52 (2000), pp. 24-28, 2000.
[6] W. Tu, “Comeld TM Joints : Optimisation of Geometric Parameters of the Protrusions By,” 2011.
[7] W. Tu, P. H. Wen, P. J. Hogg, and F. J. Guild, “Optimisation of the protrusion geometry in ComeldTM joints,” Compos. Sci. Technol., vol. 71, pp. 868–876, 2011.
[8] D. P. Graham, a. Rezai, D. Baker, P. a. Smith, and J. F. Watts, “The development and scalability of a high strength, damage tolerant, hybrid joining scheme for composite–metal structures,” Compos. Part A Appl. Sci. Manuf., vol. 64, pp. 11–24, Sep. 2014.
[9] F. Smith, “An innovation in composite to metal joining,” 2004. [Online]. Available: http://www.twi-global.com/technical-knowledge/published-papers/comeld-an-innovation-in-composite-to-metal-joining/. [Accessed: 21-Jan-2015].
[10] W. Xiong, B. Blackman, J. P. Dear, and X. Wang, “The effect of composite orientation on the mechanical properties of hybrid joints strengthened by surfi-sculpt,” Compos. Struct., 2015.
[11] I. Heatsculptor.eu, “Manufacture of complex surfaces for heat exchange,” 2013.
[12] P. N. Parkes, R. Butler, J. Meyer, and a. de Oliveira, “Static strength of metal-composite joints with penetrative reinforcement,” Compos. Struct., vol. 118, pp. 250–256, Dec. 2014.
[13] I. Custompart, “3D Printing,CustomPart,” Nature, 2008.
[14] S. Ucsnik, M. Scheerer, S. Zaremba, and D. H. Pahr, “Experimental investigation of a novel hybrid metal–composite joining technology,” Compos. Part A Appl. Sci. Manuf., vol. 41, no. 3, pp. 369–374, Mar. 2010.
[15] I. SMENCO, “Aluminium Welding,” pp. 1–13, 2014.
[16] D. Redaktion, “Attachment of Single Contact Parts,” Percuss. Weld., vol. 68, pp. 121–132, 2014.
[17] N. Li, P. H. Chen, X. Y. Liu, W. Ma, and X. C. Wang, “A micro-macro finite element model for failure prediction of ComeldTM joints,” Compos. Sci. Technol., vol. 117, pp. 334–341, 2015.
[18] C. G. Pickin, S. W. Williams, and M. Lunt, “Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding,” J. Mater. Process. Technol., vol. 211, no. 3, pp. 496–502, 2011.
[19] X. Wang, J. Ahn, Q. Bai, W. Lu, and J. Lin, “Effect of forming parameters on electron beam Surfi-Sculpt protrusion for Ti–6Al–4V,” Mater. Des., vol. 76, pp. 202–206, 2015.
[20] D. P. Graham, a. Rezai, D. Baker, P. a. Smith, and J. F. Watts, “The development and scalability of a high strength, damage tolerant, hybrid joining scheme for composite-metal structures,” Compos. Part A Appl. Sci. Manuf., vol. 64, pp. 11–24, 2014.
[21] A. K. Kaw and F. Group, Mechanics of Composite Materials. 2006.
[22] Astm D 5868, “Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic ( FRP ) Bonding,” Standards, vol. 01, no. Reapproved 2014, pp. 1–2, 2001.