[4] Jalili N., Laxminarayana K., A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences, International Journal of Mechanics, 14 (8), 2004, pp. 907-914.
[7] Adams J.D., Parrott G., Bauer C., Sant T., Manning L., Jones M., Rogers B., McCorkle D., Ferrel T.L, Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array, Applied Physics Letters, 83, 2003, pp. 3428-3440.
[8] Salehi-Khojin A., Bashash S., Jalili N., Modeling and Experimental Vibration Analysis of Nanomechanical Cantilever Active Probes, Micromechanics and Microengineering, 18, 2008, 085008 (11pp).
[9] Liqun D., Guiryong K., Fumihito A., Toshio F., Kou-ichi I., Yasunori T., Structure design of micro to-uch sensor array, Sensors and Actuators A, 107, 2003, pp. 7-13.
[10] Korayem M.H., Ghaderi R., Sensitivity analysis of nonlinear vibration of AFM piezoelectric MC in liquid, International Journal of Mechanics and Materials in Design, 10(2), 2014, pp. 121–131.
[11] Rogers B., Manning L., Sulchek T., Adams J.D., Improving tapping mode atomic force microscopy with piezoelectric cantilevers, Ultramicroscopy, 100, 2004, pp. 267-276.
[12] Mahmoodi S.N., Jalili N., Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers, International Journal of Non-Linear Mechanics, 42, 2007, pp. 577-587.
[13] Wolf K., Gottlieb O., Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer, Journal of Applied Physics, 91(7),2002, pp. 4701-4712.
[14] Fung R.F., Huang S.C., Dynamic modeling and vibration analysis of the atomic force microscope, ASME Journal of Vibration and Acoustics, 123, 2001, pp. 502–509.
[15] Mahmoodi S.N., Dagag M.F., Jalili N., On the nonli-near-flexural response of piezoelectrically driven microcantilever sensors, Sens. and Act. A, 153, 2009, pp. 171-179.
[16] Mahmoodi S.N., Jalili N., Ahmadian M., Subharm-onics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers, Nonlinear Dynamics, 59, 2010, pp. 397-409.
[17] Ghaderi R., Nejat A., Nonlinear Mathematical Modeling of Vibrating Motion of Nanomechanical Cantilever Active Probe, Latin American Journal of Solids and Structures, 11, 2014, pp. 369-385.
[18] Shin Ch., Jeon I., Khim Z.G., Hong J.W., Nam H.J., Study of sensitivity and noise in the piezoelectric self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit, Review of Scientific Instruments, 81, 2010, 035109.
[19] Dong W., Lu X., Cui Y., Wang J., Liu M., Fabrication and characterization of microcantilever integrated with PZT thin film sensor and actuator, Thin Solid Films, 515, 2007, pp. 8544–8548.
[20] Itoh T., Suga T., Self-excited force sensing mic-rocantilevers with piezoelectric thin films for dynamic scanning force, Sensors and Actuators A: Physics, 54, 1996, pp. 477–481.
[21] Lee C., Itoh T., Suga T., Self-excited piezoelectric PZT microcantilevers for dynamic SFM-with inh-erent sensing and actuating capabilities, Sensors and Actuators A., 72, 1999, pp. 179–188.
[22] Korayem M.H., Ghaderi R., Vibration response of a piezoelectrically actuated microcantilever subjected to tip–sample interaction, Scientia Iranica B, 20 (1), 2013, pp. 195–206.