Simulation microcapsules reinforced by carbon nanotubes contained in a capsule-based self-healing materials

Document Type: Persian

Authors

1 Professor of Mechanical Faculty of the Technical University Malkashtr - Composite Engineering Research Center

2 The senior student of Mechanical Faculty of the Technical University Malkashtr - Composite Engineering Research Center

3 Professor, Faculty of Mechanical Engineering Technical University Malkashtr - Composite Engineering Research Center

Abstract

از آن جهت که مواد کامپوزیتی به خصوص کامپوزیت‌ها با زمینه پلیمری ساختارهای آسیب‌پذیری نسبت به صدمات ایجاد شده در فرم ترک و شکستگی هستند. در سال‌های اخیر تلاش‌های علمی جدید در جهت ایجاد یک واحد کنترل داخلی صورت گرفته است، تا بتواند به صورت خودمختار در ترمیم کامپوزیت‌ها عمل کند. نام این نظریه خودترمیمی است. نظریه خودترمیمی ناشی از همسان‌سازی بیولوژییکی، نشان می‌دهد؛ همان‌گونه که عمیق‌ترین زخم‌ها وبریدگی‌ها به خودی خود ترمیم می‌شوند، می‌توان این ادعا را کرد که تمام مواد طبیعی قابلیت ترمیم ساختار خود را دارند. در این مقاله، مطالعه بر روی خواص میکروکپسول‌های موجود در کامپوزیت‌های خودترمیم پایه کپسولی مورد بررسی قرار می‌گیرد و هدف بررسی برهم‌کنش و انرژی ناشی از آن بین نانولوله‌های کربنی و پلیمر اوره‌فرمالدهید به عنوان ماتریس پایه در میکروکپسول‌های موجود در مواد خودترمیم پایه کپسولی، به روش تئوری تابع چگالی است. در ابتدا تأثیرات کایرالیتی و قطر نانولوله‌ها مورد بررسی قرار گرفت. پس از آن گروه‌های عاملی متفاوت بر روی نانولوله قرار می‌گیرند. در آخر میزان مدول یانگ که بر پایه‌ی ان;کرنشی
در محدوده‌ی تغییر شکل الاستیک قرار دارد، مورد محاسبه قرار گرفت
Since the polymer matrix composite structures of composite materials especially vulnerable to injuries in the form of cracks and fractures. In recent years, new scientific efforts have been made to create an internal control unit, to be able to act autonomously in composite restorations. The theory is resilient Biologically matched resilient theory of shows, just as the deepest wounds cuts to heal itself, can claim to be all natural substances have the ability to repair its structure. In this paper, the study on the healing properties of the microcapsules contained in the composite capsular base is examined and to investigate the interaction between carbon nanotubes and energy from urea formaldehyde polymer as the base matrix resilient material base in the microcapsules contained in the capsule, the method theory density function. At first the effect of chirality and diameter of the nanotubes was investigated. Then different functional groups on the nanotubes. Finally, the Young's modulus that is based on the strain energy in the elastic deformation range, was calculated

Keywords


[1].       Weiner S and Wagner H.D, the Material Bone: Structure Mechanical Function Relations, Annual Review of Materials Science, vol. 28, 1998, pp. 271-298.

[2].       Zhou B.L, Some progress in the biomimetic study of composite materials, Materials chemistry and physics, vol. 45, 1996, pp. 114–119.

[3].       Fratzl P, and Weinkamer R, in Self Healing Materials: An Alternative Approach to20 Centuries of Materials Science, S. vanderZwaag, 2007, pp. 323–335.

[4].       Vermolen, F.J, van Rossum, W.G, Javierre, E, and Adam, J.A, Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, S.vanderZwaag, 2007, pp. 337–363.

[5].       Kessler  M.R, Self-healing: A new paradigm in materials design, Proceedings of Part G-Journal of Aerospace Engineering, vol. 221, 2007, pp. 479–495.

[6].       Wool R.P, Self-healing materials: a review, Soft Matter, vol. 4, 2008, pp. 400-18.

[7].       Kessler M.R, Characterization and performance of a self-healing composite material. PhD Thesis in Theoretical and Applied Mechanics, Graduate College of the University of Illinois at Urbana-Champaign, 2002.

[8].       Brown E.N, Sottos N.R, White S.R. Fracture testing of a self-healing polymer composite, Experimental Mechanics. vol. 42, 2002, pp. 372–79.

[9].       Yin T, Zhou L, Rong MZ, Zhang MQ, Self-healing woven glass fabric/epoxy compositeswith the healant consisting of microencapsulated epoxy and latent curing agent, Smart Material and Structure. vol.17, 2007, 1.

[10].     Beiermann BA, Keller MW, Sottos NR, Self-healing flexible laminates for resealing of puncturedamage. Smart Material and Structure, vol. 18, 2009, 8.

[11].     J.H. Gou, B. Minaie, B. Wang,Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites,  Computational Materials Science, vol. 31,  2004, pp. 225-236.

[12].     Moniruzzaman M, Winey K.I, Polymer Nanocomposites Containing Carbon Nanotubes, Macromolecules, vol. 39, 16, 2006, pp.  5194-5205.

[13].     Tasis D, Tagmatarchis N, Bianco A, Prato M, Chemistry of Carbon Nanotubes, Chemical Reviews, vol. 106, 3, 2006, pp. 1105-1136.

[14].     Chan, S.P, Chen G, Gong X.G, Liu Z.F, Chemisorption of Hydrogen Molecules on Carbon Nanotubes under High Pressure, Physical Review Letters, vol. 87, 2001.

[15].    Gou J.H, Liang Z.Y, Zhang C, Wang B, Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites, Composites Part B-Engineering, vol. 36, 2005, pp. 524-533.

[16].     Fereidoon A, GhorbanzadeAhangari M, Ganji M.D, Jahanshahi M, Densityfunctional theory investigation of the mechanical properties of single-walled carbon nanotubes, Computatinol Material. Science, vol. 53, 2012, pp. 377-381.

[17].     Zaminpayma E, Mirabbaszadeh K, Interaction between single-walled carbon nanotubes and polymers: A molecular dynamics simulation study with reactive force field, Computatinol Material Science, vol. 58, 2012, pp. 7-11.

[18].     Xie J, Xue Q.Z, Chen H, Keller A, Dong. M.D,Different factors’ effect on the SWNT-fluorocarbon resin interaction: A MD simulation study, Computatinol Material Science, vol. 49, 2010, pp. 148-157.

[19].     Gou  J, Minaie  B, Wang B, Liang z, Zhang C,Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites, Computatinol Material Science, vol. 31, 2204, pp. 225-236.

[20].     Yang M, Koutsos V, Zaiser M, Interactions between Polymers and Carbon Nanotubes: A Molecular Dynamics Study. J Phys Chem B, vol. 109, 20, 2005, pp. 10009-10014.

[21].     Gou J, Minaie B, Wang B, Liang Z, Zhang C, Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Computational Materials Science, vol. 31, 2004, pp. 225-236.

 

[22].     Liao K, Li S, Interfacial characteristics of a carbon nanotube–polystyrene composite system, Appl Phys Lett, vol. 79, 2001, pp. 4225-4227.

[23].     Mrch N.H., Theory of the inhomogeneous electron gas, Plenum New York, 1983, pp. 130-142.

[24].     Gou J.H, Liang Z.Y, Zhang C, Wang B,Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites, Composite Part B: Engineering, vol. 36, 2005, pp. 524-533.

[25].    Kubler J., Theory of Itinerant Electron Magnetism, Oxford University Press, 2000, pp. 41-50.

[26].     Lieb E.H., Thomas-Fermi and related theories of atoms and molecules, Reviews of Modern Physics, vol. 53, 603, 1981.

[27].     Gilbert T., Hohenberg-Kohn theorem for nonlocal external potentials, Physical Review B, vol. 12, 2111, 1975.

[28].     Kohn W., Sham L.J., Self-consistent equation including exchange and correlation effects, Physical Review vol. 140, 1965, pp. 1133-1138.

[29].     Perdew J.P., and Zunger A., Self-interaction correction to density-functional approximations for many-electron systems,  Physical Review B, vol. 23, 5048, 1981.

[30].     Zhu Z, Cheng Y, and Schwingenschlogl U, Band inverrsion mechanism in topological insulators, Physical Review B, vol. 85, 235401, 2012.

]31[.       افسری کهنه شهری ا، درویش گنجی  م، خلیل زاده م، سنتز دی آریل اترها و محاسبات کامپیوتر مواد اولیه آنها بر روی سطح نانولوله های کربنی به روش کوانتومی نظریه تابعیت چگالی، دانشکده شیمی، دانشگاه آزاد اسلامی واحد قائم شهر.

[32].     Becke A.D., A new mixing of Hartree-Fock and local density-functional theories, The Journal of chemical physics vol. 98, 1372, 1993.

[33].     Levy M., and Perdew J.P., Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formals tests of generalized-gradient approximations, Physical Review B, vol. 48, 11638, 1993.