Numerical investigation of heat transfer and laminar Water-Al2O3 ‎nanofluid flow in a rectangular Rib-Microchannel

Document Type : Persian


1 Assistant Professor, Department of Mechanical Engineering, Islamic Azad University of Khomeini Shahr, Iran, Isfahan.

2 Assistant Professor, Department of Mechanical Engineering, Islamic Azad University, Najaf Abad, Iran, Isfahan.

3 Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran

4 MSc, Department of Mechanical Engineering, Islamic Azad University of Khomeini Shahr, Iran, Isfahan


در تحقیق حاضر در مورد اثرات ارتفاع دندانه در میکروکانال دندانه‌دار دو بعدی، بر روی پارامترهای انتقال حرارت و دینامیک سیالات محاسباتی جریان آرام نانوسیال آب-اکسید آلومینیم است. بررسی‌های این تحقیق به صورت عددی با نرم افزار تجاری فلوئنت3/6 برای اعداد رینولدز10 و 100، برای چهار حالت مختلف ارتفاع دندانه انجام شده است. افزایش ارتفاع دندانه‌های داخلی یا مغشوشگرهای جریان، عملکرد انتقال حرارت جابجایی در میکروکانال را به میزان قابل توجهی افزایش می‌دهد. مشاهده می‌شود که نرخ انتقال حرارت در میکروکانال با افزایش ارتفاع دندانه و افزایش کسر حجمی نانو ذرات، بهبود می‌یابد. اما افزایش ارتفاع دندانه، باعث افزایش ضریب اصطکاک بزرگ‌تر در مقایسه با میکروکانال با ارتفاع دندانه ثابت است. در این تحقیق برای همه حالات مختلف ارتفاع دندانه، تأثیر ارتفاع دندانه بر روی پارامترهای جریان سیال بررسی شده است. نتایج در قالب پروفیل‌های سرعت و دما، عدد ناسلت و کانتورهای تابع جریان و خطوط هم دما ترسیم می-شوند......


[1]         Karimipour, A., Alipour, H., Akbari, O.A., Toghraie Semiromi, D. and Esfe, M.H, Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nanofluid with vrying volume fraction in a rectangular Two-Dimensional microchannel. Indian Journal of Science and Technology, Vol 8(15), 5 1 7 07, July (2015).
[2]        Nasiri, M., Etemad, S.Gh., Bagheri, R, Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, 38 (2011) 958–963.
[3]        Karimipour, A., Nezhad, A.H., D’Orazio, A., Shirani, E, Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int. J. Therm. Sci. 54 (2012) 142-152.
[4]  Choi, S.U.S., Nanofluids: from vision to reality through research, J. Heat Transf. 131 (2009) 1- 9.
[5]  Webb, R.L., Advances in shell side boiling of refrigerants, J. Inst. Refrig. 87 (1991) 75-86.
[6]  Webb, R.L., and Robertson, G.F., Shell-side evaporators and condensers used in the refrigeration industry, in: R. K. Shah, E. C. Subbarao, R.A. Mashelkar (Eds.), Heat Transfer Equipment Design, Hemisphere Pub. Corp, Washington, 1988, pp.559-570.
[7]  Jaber, M.H., Webb, R.L., Stryker, P., An experimental investigation of enhanced tubes for steam condensers, ASME Paper, (1991) 1-8.
[8]  Sunden, B., and Xie, G., Gas turbine blade tip heat transfer and cooling: a literature survey, Heat Transf. Eng, 31 (2010) 527-554.
[9]  Karwa, R.S.C., Solanky, J., Saini, S., Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates, Energy, 26 (2001) 161-176.
[10]           Lee, C. K., and Abdel Moneim, S. A., Computational analysis of heat transfer in turbulent flow past a horizontal surface with a 2-D ribs, Int. Commun. Heat Mass Transf, 26 (2001) 161-170.
[11]           Wang, L., and Sunden, B., Experimental investigation of local heat transfer in a square duct with various-shaped ribs, Int. J. Heat Mass Transf. 43 (2006) 759-766.
[12]           Saha, S. K., Thermal and friction characteristics of turbulent flow through rectangular and square ducts with transverse ribs and wire-coil inserts, Exp. Therm. Fluid Sci. 34 (2010) 575-589.
[13]           Liou, T. M., Hwang, J. J., Chen, S.H., Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one    principal wall, Int. J. Heat Mass Transf. 36 (1993) 507-517.
[14]           Rau, G., Cakan, M., Moeller, D., Arts, T., The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel, J. Turbomach. 120 (1998) 368-375.
[15]           Manca, O., Nardini, S., Ricci, D., Numerical investigation of air forced convection in channels with differently shaped transverse ribs, Int. J. Numer. Method Heat Fluid Flow, 21 (2010) 618 639.doi:10.1108/09615531111135855.
[16]           Park, B.C., Cho, Y.I., Hydrodynamic and heat transfer study of dispersed fl uids with submicron metallic oxide particles, Exp. Heat Transf, 11 (1998) 151-170.
[17]           Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices Microstruct. 35 (2004) 543.
[18]           Izadi, M., Behzadmehr, A., Jalali-Vahida, D., Numerical study of developing laminar forced convection of a nanofl uid in an annulus, Int. J. Therm. Sci. 48 (2009) 2119-2129.
[19]           Mahdy,  A., Unsteady  mixed  convection  boundary  layer  flow  and  heat transfer of nanofluids due to stretching sheet. Nuclear Engineering and Design, 249 (2012): 248-255.
[20]           Aminossadati S. M., Ghasemi B., “Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure, European Journal of Mechanics B/Fluids, No. 28,2009, pp. 630-640.
[21]           Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solution, J. Chem. Phys. , vol. 20, pp. 571–581, 1952.
[22]           Patel, H. E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S.K.A Micro-Convection Model for Thermal Conductivity of Nanofluids, Pramana — J. Phys, vol. 65, no. 5, pp. 863–869, 2005