[1] Soldatos K.P., Hajigeoriou V.P., Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels, Journal of Sound and Vibration, Vol. 137, 1990, pp. 369-384.
[2] Soldatos K.P., A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels, Journal of Sound and Vibration,Vol. 97, 1984, pp. 305-319.
[3] Lam K.Y., Loy C.T., Effects of boundary conditions on frequencies characteristics for a multi-layered cylindrical shell, Journal of Sound and Vibration, Vol. 188, 1995, pp. 363-384.
[4] Loy C.T., Lam K.Y., Shu C., Analysis of cylindrical shells using generalized differential quadrature, Shock and Vibration, Vol. 4, 1997, pp. 193-198.
[5] Soedel W., A new frequency formula for closed circular cylindrical shells for large variety of boundary conditions, Journal of Sound and Vibration, Vol. 70, No. 3, 1980, pp. 309-317.
[6] Loy C.T., Lam K.Y., Vibration of cylindrical shells with ring support, International Journal of Mechanical Science, Vol. 39, 1997, pp. 455-471.
[7] Bakhtiari-Nejad F., Mousavi Bideleh S.M., Nonlinear free vibration analysis of pre-stressed circular cylindrical shells on the Winkler-Pasternak foundation, Thin-Walled Structures, Vol. 53, 2012, pp. 26–39.
[8] Paliwal D.N., Large amplitude free vibrations of cylindrical shell on Pasternak foundations, International Journal of Pressure Vessels & Piping, Vol. 54, 1993, p.p. 387-398.
[9] Pradhan S.C., Loy C.T., Lam K.Y., Reddy J.N., Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Applied Acoustics, Vol. 61, 2000, pp. 111-129.
[10] Loy C.T., Lam K.T., Reddy J.N., Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences Vol. 41, 1999, pp. 309-324.
[11] Ravikiran Kadoli, Ganesan N., Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition, Journal of Sound and Vibration,Vol. 289, 2006, pp. 450-480.
[12] Haddadpour H., Mahmoudkhani S., Navazi H.M., Free vibration analysis of functionally graded cylindrical shells including thermal effects, Thin-Walled Structures, Vol. 45, 2007, pp. 591-599.
[13] Shen. S.-H., Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium, International Journal of Mechanical Sciences, Vol. 51, No. 5, 2009, pp. 372-383.
[14] Bagherizadeh E., Kiani Y., Eslami M.R., Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation, Composite Structures, Vol. 93, No. 11, 2011, pp. 3063-3071.
[15] Shen. S.-H., Wang H., Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments, Composites Part B: Engineering, Vol. 60, 2014, pp. 167-177.
[16] Bich D.H., Long V.D., Non-linear dynamical analysis of imperfect functionally graded material shallow shells, Vietnam Journal of Mechanics, VAST, Vol. 32, No. 1, 2010, pp. 1-14.
[17] Bich D.H., Xuan N.N., Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations, Journal of Sound and Vibration, Vol. 331, 2012, pp. 5488-5501.
[18] Volmir A.S., Nonlinear Dynamics of Plates and Shells, Science Edition, 1972.