Document Type: Persian
Authors
^{1} MSc Student, Department of Mechanical Engineering, Takestan Branch, Islamic Azad University, Takestan, Iran
^{2} Assistant Prof., Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
^{3} Professor, Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
^{4} MSc Student, Department of Mechanical Engineering, University of Guilan, Rasht, Iran
Abstract
Keywords
[1] G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, vol. 1, No. 24, 1957, pp. 361–364.
[2] A. D. Dimarogonas, C. A. Papadopulus, Vibration of cracked shafts in bending, Journal of Sound and Vibration, vol. 91, No. 4, 1983, pp. 583–593.
[3] H. Okamura, H. W. Liu, C. Chorng-Shin, A cracked column under compression, Engineering Fracture Mechanics, vol. 1, pp. 547–564, 1969.
[4] W. M. Ostachowicz, M. Krawczuk, Vibrational analysis of cracked beam, Composite Structures, vol. 36–22, 1990, pp. 245–250.
[5] M. Krawczuk, W. M. Ostachowicz, Influence of a crack on the dynamic stability of a column,Journal of Sound and Vibration, vol. 167, No. 3, 1993, pp. 541–555.
[6] M. Skrinar, T. Pliberšek, New linear spring stiffness definition for displacement analysis of cracked beam elements, Proceedings in Applied Mathematics and Mechanics, vol. 4, 2004, pp. 654–655.
[7] A. J. Dentsoras, A. D. Dimarogonas, Resonance controlled fatigue crack propagation in a beam under longitudinal vibrations, International Journal of Fracture, vol. 1, No. 23, 1983, pp. 15–22.
[8] T. G. Chondros, A. D. Dimarogonas, Identification of cracks in welded joints of complex structures, Journal of Sound and Vibration, vol. 4, No. 64, 1980, pp. 531–538.
[9] P. F. Rizos, N. Aspragathos, A. D. Dimarogonas, Identification of crack location and magnitude in a cantilever beam from the vibration modes, Journal of Sound and Vibration, vol. 3, No. 138, 1990, pp. 381–388.
[10] F. Bagarello, Multiplication of distribution in one dimension: possible approaches and applications to d-function and its derivatives, Journal of Mathematical Analysis and Applications, vol. 196, 1995, pp. 885–901.
[11] F. Bagarello, Multiplication of distribution in one dimension and a first application to quantum field theory, Journal of Mathematical Analysis and Applications, vol. 266, 2002, pp. 298–320.
[12] B. Biondi, S. Caddemi, Closed form solutions of Euler–Bernoulli beam with singularities, International Journal of Solids and Structures, vol. 42, 2005, pp. 3027–3044.
[13] B. Biondi, S. Caddemi, Euler–Bernoulli beams with multiple singularities in the flexural stiffness, European Journal of Mechanics A/Solids, vol. 26, 2007, pp. 789–809.
[14] A. Palmeri, A. Cicirello, Physically-based Dirac‘s delta functions in the static analysis of multi-cracked Euler–Bernoulli and Timoshenko beams, International Journal of Solids and Structures, vol. 48, 2011, pp.2184–2195.
[15] A. Cicirello, A. Palmeri, Static analysis of Euler-Bernoulli beams with multiple unilateral cracks under combined axial and transverse loads, International Journal of Solids and Structures, vol. 51, 2014, pp. 1020-1029.
[16] M. Dona, A. Palmeri, M. Lombardo, Exact closed-form solutions for the static analyses of multi-cracked gradient-elastic beams in bending, International Journal of Solids and Structures, vol. 51, 2014, pp. 2744-2753.
[17] S. A. Eftekhari, A note on mathematical treatment of the Dirac-delta function in the differential quadrature bending and forced vibration analysis of beams and rectangular plates subjected to concentrated loads, Applied Mathematical Modelling, In Press, Corrected Proof, 2015.
[18] G. Gounaris, A. D. Dimarogonas, A finite element of a cracked prismatic beam for structural analysis, composite structures, vol. 3, No. 28, 1988, pp. 301–313.
[19] M. Skrinar, A. Umek, Plane beam finite element with crack, Journal of Gradbeni vestnik (in Slovenian), vol. 1, No. 2, 1996, pp. 2–7.
[20] M. Skrinar, On the application of a simple computational model for slender transversely cracked beams in buckling problems, Computational Materials Science, vol. 1, No. 39, 2007, pp. 242–249.
[21] J. N. Reddy, On locking-free shear deformable beam finite elements, Computer Methods in Applied Mechanics and Engineering, vol. 149, 1997, pp. 113-132.
[22] M. Abromowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1965, pp. 773.
[23] M. Skrinar, Elastic beam finite element with an arbitrary number of transverse cracks, Finite Elements in Analysis and Design, vol. 45, 2009, pp. 181–189.
[24] T. R. Chandrupatla, A. D. Belegundu, Introduction to Finite Elements in Engineering, Second Edition, New Jersey: Prentice Hall, 1997, pp. 9-13.
[25] K. Rajagopalan, Finite Element Buckling Analysis of Stiffened Cylindrical Shells, A. A. Balkema: Rotterdam, 1993, pp. 13-25.
[26] J. N. Reddy, an Introduction to Nonlinear Finite Element Analysis, New York: Oxford 2005, pp. 87-126.