Influence of Elastic Support on the Energy Absorption in Front Crash Ductile Failure Criterion

Document Type : Persian


1 MSc Student, Department of Engineering , Najaf Abad Branch, Islamic Azad University, Isfahan, Iran

2 Assistant Prof., Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran


Thin-walled structures like crash boxes may be used as energy absorption members in automotive chassis. There have been many studies addressing the behaviors of energy absorption members on frontal crash. These researches have attempted to predict the energy absorption and maximum impact load in shell structures. The energy absorption and maximum impact load depend on many parameters including boundary condition, strain rate, history of plastic deformation during metalworking, geometry; and material and impact energy (i.e. mass and velocity of the striker). This study examined the crash behavior of tube made of the extruded aluminum alloy EN AW-7108 T6 using an elastic boundary condition instead of rigid boundary condition- on the bottom of a crash box. Analytical, Numerical analytical methods is used in this study to simulated crash box behavior, Results showed that using elastic boundary could change the deformation mode and decrease the maximum impact load


[1]        Pugsley A., Macaulay M., The large scale crumpling of thin cylindrical columns, Quarterly Journal of Mechanics & Applied Mathematics, vol. 13(1), 1960, pp. 1-9.
[2]        Alexander J., An approximate analysis of the collapse of thin-cylindrical shells under axial loading, Quarterly Journal of Mechanics & Applied Mathematics, vol. 13, 1960.
[3]        Andrews K.R.F., England G.L., and E. GHANI, Classification of the axial collapse of cylindrical tubes under quisi-static loading, International Journal Mechanic Science, vol. 25(9), 1983, pp. 687-696.
[4]        Gupta N., Nagesh K., Experimental and Numerical Studies of the Collapse of Thin Tubes under Axial Compression, Latin American Journal of Solids and Structures, vol. 1, 2004, pp. 233-260.
[5]        Gupta N.K., Venkatesh, Experimental and numerical studies of impact axial compression of thin-walled conical shells. International Journal Impact Engineering, vol. 34(4), 2007, pp. 708-720.
[6]        Bardi, F.C., Yun H.D., Kyriakides S., on the axisymmetric progressive crushing of circular tubes under axial compression. International Journal of Solids and Structures, vol. 40, 2003, pp. 3137–3155.
[7]        Nagel G.M., Thambiratnam D.P., Computer simulation and energy absorption of tapered thinwalled rectangular tubes. Thin Wall Structures, vol. 43, 2005, pp. 1225–1242.
[8]        Reid J.D., Crashworthiness of Automotive steel mid rails: thickness and material sensitivity. Thin Wall Structures, vol. 2,  1996, pp. 83–103.
[9]        Liu, Y., Crashworthiness design of multi-corner thin-walled columns. Thin Wall Structures, vol. 46, 2008, pp. 1329-1337.
[10]      Liu Y., Optimum design of straight thin-walled box section beams for crashworthiness analysis, Finite Element in analysis and Design, vol. 44, 2008, p. 139–147.
[11]      Yamazaki K. Han J., Maximization of the crushing energy absorption of cylindrical shells, Advances in Engineering Software, vol. 31, 2000, pp. 425–434.
[12]      Hou S., et al., Multiobjective optimization for tapered circular tubes, Thin-Walled Structures, vol. 49, 2011, pp. 855-863.
[13]      Forsberg J., Nilsson L., Evaluation of response surface methodologies used in crashworthiness optimization, International Journal Impact Engineering, vol. 32, pp. 759–777.
[14]      Zhang Y., Zhu P., Chen G., Lightweight Design of Automotive Front Side Rail Based on Robust Optimization, Thin Wall Structures, vol. 45, 2007, pp. 670–676.
[15]      Shi Y., et al., Lightweight design of automotive front side rails with TWB concept, Thin Wall Structures, Vol. 45, 2007, pp. 8–14.
]16[      عبدالله، ا.، بهینه سازی تیوپهای مدور با روش RMS  به منظور کاهش صدمه به سرنشینان خودرو در برابر بارهای ضربهای، دانشکده مهندسی خودرو،  2010، دانشگاه علم و صنعت ایران، تهران.
]17[      ابراهیمی، م.ر.، جذب انرژی برخورد با استفاده از الگوریتم ژنتیک،دانشکده مهندسی خودرو، خرداد 1389، دانشگاه علم و صنعت ایران، تهران.
[18]      Kim H.S., Wierzbicki T., Closed-from solution for crushing response of three-dimensional thinwalled THINWALLED S FRAME WITH RECTANG, International Journal Impact Engineering , vol. 30, 2004, pp. 87–112.
[19]      Hosseini-Tehrani P., Asadi E., Effects of new materials on the crashworthiness of S-rails, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol.222 (1), 2008, pp. 37-44.
[20]      AlaviNia A., et al., Effects of buckling initiators on mechanical behavior of thin-walled, International Journal of Thin-Walled Structures, vol. 59, 2012, pp. 87–96.
[21]      Durrenbergera L., Lemoinea X., Molinarib, Effects of pre-strain and bake-hardening on the crash properties of a top-hat section, Journal of Materials Processing Technology, 2011, pp. 1937– 1947.
[22]      Karagiozova D., Alves M., Transition from progressive buckling to global bending of circular shells under axial impact––Part I: Experimental and numerical observations. International Journal of Solids and Structures, vol. 41, 2004, pp. 1565–1580.
[23]      Karagiozova D., Alves M., Transition from progressive buckling to global bending of circular shells under axial impact––Part II: Theoretical analysis. International Journal of Solids and Structures, vol. 41, 2004, pp. 1581–1604.
[24]      Rusinek A., et al., Effect of plastic deformation and boundary conditions combined with elastic wave propagation on the collapse site of a crash box, Thin-Walled Structures, vol. 46, 2008, pp. 1143–1163.
[25]      Bayata, V., Hosseini-Tehrania P., Study on crashworthiness of wagon's frame under frontal impact frontal impact. International Journal of Crashworthiness, vol. 16(1), 2011, pp. 25-39.
[26]      El-Magd E., H.G., Tham R., Hooputra H., Werner H. Fracture Criteria for Automobile Crashworthiness Simulation of Wrought Aluminium Alloy Components, Mat.-wiss.u. Werkstof ftech, vol. 32, 2001, pp. 712-724.
[27]      Schmitt W., S Un D.Z., B Lauel, J.G., HRISTLEIN C.J., Improved Description of the Material Behaviour of Aluminium Automobile Components by the Gurson Model, In Proceeding of the 31 st, International Symposium on Automotive Technology and Automation, 1998.
[28]      Kitamura O., FEM approach to the simulation of collision and grounding damage. Marine Structures, vol. 15, 2002, pp. 403–428.
[29]      Pickett K., et al., Failure prediction for advanced crashworthiness of transportation vehicles. International Journal of Impact Engineering, vol. 30, 2004, pp. 853–872.
[30]      Dorian K., et al., Plasticitu and damage in aluminum syntactic foams deformed under dynamic and quasi-static condition. Materials Science and Engineering: A, vol. 391 (1-2), 2005, p. 408–417.
[31]      Tabiei A., Yi W., Goldberg R., Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation, International Journal of Non-Linear Mechanics, vol. 40, 2005, pp. 957–970.