[1] Masuda H., Ebata A., Teramae K., Hishinuma N., Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei, Vol 7, 1993, pp 227–233
[2] Choi, S.U.S., Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED, 231/MD,Vol 66, 1995, pp99–105
[3] Pak, B.C., and Cho, Y., Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Experimental Heat Transfer, 11 (1998) 151–170.
[4] Xuan, Y., and Li, Q., Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat Transfer, 125 (2003) pp 151–155.
[5] Wen, D., and Ding, Y., Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47 (2004) pp 5181–5188.
[6] Heris, S.Z., Etemad, S.G., Esfahany, M.N., Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Transfer, 33 (2006) 529.
[7] Heris, S.Z., Esfahany, M.N., Etemad, S.G., Experimental investigation of convective heat transfer of Al2O3/Water nanofluid in circular tube, Int. J. Heat Fluids Flow, 28 (2) (2007) 203.
[8] Duangthongsuk, W., and Wongwises, S., Heat transfer enhancement and pressure drop characteristics of TiO2–Water nanofluid in a double-tube counter flow heat exchanger, International Journal of Heat and Mass Transfer, 52 (2008) pp 2059–2067.
[9] Fotukian, S.M., and Nasr Esfahany M., Experimental study of turbulent convective heat transfer and pressure drop of diluteCuO/Water nanofluid inside a circular tube, International Communications in Heat and Mass Transfer, 37 (2010) pp 214–219.
[10] Amrollahi, A., Rashidi, A.M., Lotfi, R., EmamiMeibodi, M., Kashefi, K., Convection heat transfer of functionalized MWNT in aqueous fluids in laminar andturbulent flow at the entrance region, International Communications in Heat and Mass Transfer, 37 (2010) 717–723.
[11] Hashemi, S.M., and Akhavan-Behabadi, M.A., An empirical study on heat transfer and pressure drop characteristics of CuO–base oilnanofluid flow in a horizontal helically coiled tube under constant heat flux, International Communications in Heat and Mass Transfer, 39 (2012) pp 144–151.
[12] Hojjat, M., Etemad, S.Gh., Bagheri, R., Thibault,Convective heat transfer of non Newtonian nanofluids througha uniformly heated circular tube, International Journal of Thermal Sciences, 50 (2011) pp 525-531.
[13] Kayhani, M.H., Soltanzadeh, H., Heyhat, M.M., Nazari, M., Kowsary, F. Experimental study of convective heat transfer and pressure drop ofTiO2/Water nanofluid, International Communications in Heat and Mass Transfer, 39 (2012) pp 456–462.
[14] SyamSundar, L., Ravi Kumar, N.T., Naik, M.T., Sharma, K.V., Effect of full length twisted tape inserts on heat transfer and frictionfactor enhancement with Fe3O4 magnetic nanofluid inside a plain tube:An experimental study, International Journal of Heat and Mass Transfer, 55 (2012) pp 2761–2768.
[15] Blasius, H., Grenzschichten in Flussigkeitenmitkleiner Reibung (German), Z. Math. Phys, 56 (1908) pp 1–37.
[16] Fakoor Pakdaman, M., Akhavan-Behabadi, M.A., Razi, P., An experimental investigation on thermo-physical properties and overallperformance of MWCNT/heat transfer oil nanofluid flow inside verticalhelically coiled tubes, Experimental Thermal and Fluid Science, 40 (2012) pp 103–111.
[17] Abbasian Arani, and A.A., Amani, J., Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–Water nanofluid, Experimental Thermal and Fluid Science, 44 (2013) pp 520–533.