[1] Kandlikar S, Garimella S, Li D, Colin S, King MR (2006) Heat transfer and fluid flow in minichannels and microchannels.
[2] Niu XD, Shu C, Chew YT (2007) A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Computers & Fluids 36: 273-281.
[4] Gad-el-Hak M (2001) Flow physics in MEMS. Rev. Mec. Ind. 2: 313-341.
[5] Nie X, Doolen GD, Chen S (2002) Lattice-Boltzmann simulation of fluid flows in MEMS. J. Stat. Phys. 107: 279-289.
[6] Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30: 329-364.
[8] Karimipour A, Nezhad AH, D’Orazio A, Shirani E (2012) Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int. J. Therm. Sci. 54: 142-152.
[9] Bird G (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press.
[10] Oran ES, Oh CK, Cybyk BZ (1998) Direct Simulation Mont Carlo: Recent Advances and Applications. Ann. Rev. Fluid Mech. 30: 403-441.
[11] Chen H, Chen S, Mathaaeus WM (1992) Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45: 5339-5342.
[12] Tallavajhula A, Kharagpur I, Ruede U, Bartuschat D (2011) Introduction to the Lattice Boltzmann Method. 10th Indo-German Winter Academy.
[13] Bhatnagar PL, Gross EP, Krook M (1954) A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system. Phys. Rev. 94: 511-522.
[14] Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press.
[15] Chen S (2010) Lattice Boltzmann method for slip flow heat transfer in circular microtubes: Extended Graetz problem. Appl. Math. Compu. 217: 3314-3320.
[16] Chen S, Tian Z (2010) Entropy generation analysis of thermal micro-Couette flows in slip regime. Int. J. Therm. Sci. 49: 2211-2221.
[17] Lim CY, Shu C, Niu XD, Chew YT (2002) Application of lattice Boltzmann method to simulate microchannel flows. Phys. Fluids 14: 2299-2308.
[18] Shu C, Niu XD, Chew YT (2005) A Lattice Boltzmann Kinetic Model for Microflow and Heat Transfer. J. Stat. Phy. 121: 239-255.
[19] Sofonea V, Sekerka RF (2005) Boundary conditions for the upwind finite difference lattice Boltzmann model: Evidence of slip velocity in micro-channel flow. J. Comput. Phy. 207: 639-659.
[20] Zhang YH, Qin RS, Sun YH, Barber RW, Emerson DR (2005) Gas Flow in Microchannels - A Lattice Boltzmann Method Approach. J. Stat. Phy. 121: 257-267.
[21] Hung YC, Ru Y (2006) A numerical study for slip flow heat transfer. Appl. Math. Compu. 173: 1246-1264.
[22] Xuan Y, Li Q, Ye M (2007) Investigations of convective heat transfer in ferrofluid microflows using lattice-Boltzmann approach. Int. J. Therm. Sci. 46: 105-111.
[23] Tian ZW, Zou C, Liu HJ, Guo ZL, Liu ZH, Zheng CG (2007) Lattice Boltzmann scheme for simulating thermal micro-flow. Physica A: Statistical Mechanics and its Applications 385: 59-68.
[24] Babovsky H (2009) A numerical model for the Boltzmann equation with applications to micro flows. Compu. Math. Appl. 58: 791-804.
[25] Chen S, Tian Z (2009) Simulation of microchannel flow using the lattice Boltzmann method. Physica A: Statistical Mechanics and its Applications 388: 4803-4810.
[26] Oztop HF, Dagtekin I (2004) Mixed convection in two-sided lid-driven differentially heated square cavity. Int. J. Heat Mass Transfer 47: 1761-1769.
[27] Karimipour A, Afrand M, Akbari M, Safaei MR (2012) Simulation of fluid flow and heat transfer in the inclined enclosure. World Academy of Science, Engineering and Technology 61: 435-440.
[28] Safaei MR, Goshayeshi HR, Razavi BS, Goodarzi M (2011) Numerical investigation of laminar and turbulent mixed convection in a shallow water-filled enclosure by various turbulence methods. Scientific Research and Essays 6: 4826-4838.
[29] Iwatsu R, Hyun JM, Kuwahara K (1993) Mixed convection in a driven cavity with a stable vertical temperature gradient. Int. J. Heat Mass Transfer 36: 1601-1608.
[30] D’Orazio A, Corcione M, Celata GP (2004) Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int. J. Therm. Sci. 43: 575-586.
[31] Peng Y, Shu C, Chew YT (2003) Simplified thermal lattice Boltzmann model for incompressible thermal flows. Physical Review E 68: 026701-1-8.
[33] Grucelski A, Pozorski J (2012) Lattice Boltzmann simulation of fluid flow in porous media of temperature-affected geometry. J. Theo. Appl. Mech. 50: 193-214.
[34] He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Compu. Phys. 146: 282-300.
[35] Karimipour A, Nezhad AH, D’Orazio A, Shirani E (2013) The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using lattice Boltzmann method. J. Theo. Appl. Mech. 51: 447-462.
[36] Choi SUS (1995) Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flow. ASME. FED 231/MD 66: 99-105.
[37] Oztop HF, Abu-Nada E (2008) Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29: 1326-1336.
[38] Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer 50: 2002-2018.
[39] Dehnavi R, Rezvani A (2012) Numerical investigation of natural convection heat transfer of nanofluids in a C shaped cavity. Superlatti. Microstru. 52: 312-325.
[40] Arani AA, Sebdani SM, Mahmoodi M, Ardeshiri A, Aliakbari M (2012) Numerical study of mixed convection flow in a lid-driven cavity with sinusoidal heating on sidewalls using nanofluid. Superlatti. Microstru. 51: 893-911.
[41] Mahmoodi M, Hashemi SM (2012) Numerical study of natural convection of a nanofluid in C-shaped enclosures. Int. J. Therm. Sci. 55: 76-89.
[42] Oztop HF, Mobedi M, Abu-Nada E, Pop I (2012) A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. Int. J. Heat Mass Transfer 55: 5076-5086.
[43] Abouali O, Ahmadi G (2012) Computer simulations of natural convection of single phase nanofluids in simple enclosures: A critical review. Appl. Therm. Eng. 36: 1-13.
[44] Pishkar I, Ghasemi B (2012) Cooling enhancement of two fins in a horizontal channel by nanofluid mixed convection. Int. J. Therm. Sci. 59: 141-151.
[45] Karimipour A, Nezhad AH, Behzadmehr A, Alikhani S, Abedini E (2011) Periodic mixed convection of a nanofluid in a cavity with top lid sinusoidal motion. Proc. IMechE Part C: J. Mech. Eng. Sci. 225: 2149-2160.
[46] Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N (2013) Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int. J. Therm. Sci. 75: 204-220.
[47] Nemati H, Farhadi M, Sedighi K, Fattahi E, Darzi AAR (2010) Lattice Boltzmann simulation of nanofluid in lid-driven cavity. Int. Commun. Heat Mass Transfer 37: 1528-1534.