[1] Iijima S., Helical microtubules of graphitic carbon, Nature, 345, 1991, pp. 56-58.
[2] Hummer, J. C., Rasaiah J. C., Noworyta J. P., Water conduction through the hydrophobic channel of a carbon nanotube, Nature, Vol 414, 2001, pp 188-190.
[3] Craighead H.G., Nanoelectromechanical Systems, Science, Vol 290, 2000, pp 1532-1535.
[4] Yoon J., Ru C.Q., Mioduchowski A., Vibration and instability of carbon nanotubes conveying fluid, Composites Science and Technology, Vol 65, 2005, pp 1326-1336.
[5] Wang L., Ni Q., Li M., A reappraisal of the computational modeling of carbon nanotubes conveying viscous fluid, Cumputational Materials Science,Vol 44, 2008, p 821.
[6] Wang Q., Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics, Vol 98, 2005, p 124301.
[7] Reddy J.N., Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, Vol 103, 2008, p 023511.
[8] Rashidi V., Mirdamadi H.R., Shirani E., A Novel Model for Vibrations of Nanotubes Conveying Nanoflow, Computational Materials Science, 51, Vol. 1, 2012, pp 347–352.
[9] Kaviani F., Mirdamadi H.R., Wave propagation analysis of carbon nano-tube conveying fluid including slip boundary condition and strain/inertia gradient theory, Computers and Structures, Vol 116, 2013, pp 75-87.
[10] Aydogdu M., Longitudinal wave propagation in multi-walled carbon nanotubes, Composite Structures, Vol 107, 2014, pp 578–584.
[11] Eringen A.C., Nonlocal continuum field theories, Springer-Verlag Inc, New York, 2002.
[12] Paidoussis M.P., Price S.J., de Langre E., Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press, New York, USA, 2005.
[13] اویسی س، تحلیل انتشار موج تنش و ارتعاشات در نانولولههای کربنی حاوی سیال براساس تئوری غیرمحلی، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر، 1393.