تحليل استاتیکی و دینامیکی شاسی و سازه اتوبوس 457-0

نویسنده مسئول: "\(\text{Mesf1964@cc.iut.ac.ir}^*\)

چکیده
در این مقاله شاسی و بدن اتوبوس 457-0 به روش اجزاء محدود مورد تحلیل استاتیکی و دینامیکی قرار گرفته است. این فرآیند با مدل‌سازی سیستم تعلیق شاسی و بدن اتوبوس آغاز شده است. در اینجا تحلیل استاتیکی انجام شده تا از مقاومت شاسی در حالت عمومی اطمینان حاصل شود. سپس تحلیل دینامیکی بر روی سازه و شاسی انجام شده که در این تحلیل آبیاری مواد و گذراي سازه و شاسی بررسی شده است. در تحلیل گذرا پیچش و خمش ناشی از تحرک‌های وارده از طرف جاده به سازه و شاسی با استفاده از مدل الامان محدودی که مشخص کننده کل سازه و سیل به نیزه و بررسی گردیده و از استحکام کافی سازه و شاسی در این حالت نیز اطمینان حاصل شده است.

واژه‌های کلیدی: اجزاء محدود، شاسی و بدن، تحلیل استاتیکی، تحلیل دینامیکی
1- مقدمه
در گذشته طراحی خودرو از طریق تجربه و تست‌های آزمایشگاهی گزارش می‌گردید که اندازه و پیش‌بینی روش‌های تحلیل تقریباً غیرممکن و این بایست سخت بود. با این وجود تفاوت‌هایی بین طراحی‌های جدید که جنبه‌های هم‌جایی کاهش وزن خودرو، ایمنی و کاهش مضروب سوخت، جنبه‌های اقتصادی، قابلیت بازیافت و در دسترس بودن قطعات و استیل طرحی که در نظر گرفته می‌گردد، کاهش نیافته. این تحقیقات گوگتی‌هایی در بین زمینه انجام گرفته است. مارتک لیمینت، و پرموست کار (۲۰۰۰) امکان کاهش وزن اتوپس داخل شهری را به کمک قربانی سازی در نقاط ضعیف و حفظ عضو زائده آن برای کاهش انرژی این تحقیق در کشور کانادا برای مرکز توسعه حمل و نقل کانادا انجام شده است [۱]. بالاسو و همکاران (۲۰۰۳) سازه یک اتوپس با استفاده از اجزای-‌[۲] محدود برای تبدیل نشان گردیده است.

2- تحلیل استاتیکی
در مبحث طراحی یک سازه تحلیل استاتیکی از اهمیت خاصی برخوردار است. در بررسی سازه‌ها در ابتدا با انجام یک آنالیز استاتیکی می‌توان از مقاومت بدن سازه تحت برایه ساکن و استاتیکی اطمینان حاصل نمود. در حالی- هایی که برای دینامیکی وجود دارد نیز می‌توان از برای استفاده آن برای یک یک آنالیز استاتیکی مقدار بحران را به گرفت و صورتاً با استفاده از یک آنالیز استاتیکی را سازه با نگاه از لحاظ استاتیکی و دینامیکی طراحی نمود.

در بسیاری از آنی‌نام‌ها از این روش استفاده می‌شود. در مسائل استاتیکی، خطی روابط حاکم به شکل زیر است:

\[K(u) = \{ F_i \} + \{ F_r \} \]

که در انتها

\[u = \sum_{m=1}^{N} [k_m] \]

رش مورد استفاده

به دلیل پیچیدگی هندسی سازه، خصوصاً در محل اتصالات و
باز بودن مقطع، استفاده از روش آزمایش‌های انجام‌نشده باید
است. بنابراین از روش آزمایش‌های انجام‌نشده بهترین
عملیات مورد استفاده قرار می‌گیرد، اما می‌توان با
سازی صحیح به نظر می‌رسد از آن‌ها در شبیه‌سازی مدل‌های
دینامیکی استفاده نمود. در این صورت از نرم‌افزار
روش انجام مدل‌سازی تحلیل استفاده می‌شود. این امر
جهت تحلیل استفاده شده است. شکل (1) مدل هندسی
شاسی و سازه این ایونوپوس را در نظر گرفته نشان می‌دهد.
سازه این ایونوپوس را نشان می‌دهد. این مدل
از 3969 گره و 3066 دایره است. به طوری که مدل هیچ‌یک
از گره‌ها در به دقت مدل‌سازی جرم‌های فناوری
به کار رفته، در این 25636 دایره آزادی می‌باشد. به دلیل
پیچیدگی مدل در ناحیه اتصال و وجود ورودی‌هایی با ضخامت
کم و همچنین کاهش نسبی سالمان‌ها نسبت به سالمان‌های
نگارمند، نمونه از عضویت سالمان‌ها شانسی
استفاده گردیده است. اکثر سازه این ایونوپوس نیز با
سامان‌های تیز مناسب شبیه‌سازی گردیده‌اند. [4] تأثیر این
مانند شبیه‌سازی مدل‌های در راستای مدل‌سازی شبیه‌سازی
شد و به دلیل بحث ارتعاشات عمدی این مدل به خوبی شبیه‌سازی شده و اعتبار
دارند [2 و 4]. کمک‌فرآیندی نیز با سالمان دهم شبیه‌سازی شده
همچنین جرم مدل‌سازی و مقداری نسبی سولت
و هوازی به صورت متمرکز در محل آنها قرار داده شده
است [4 و 5]. سالمان نیز با مقایسه مدل با شبیه‌سازی
مختلف تا حد کافی ریز انجام شده‌است به نحوی که تفاوت
نتایج در دو شبیه‌سازی مختلف کمتر از حد دو داده شده.
در مدل‌های محدود به دلیل اینکه اتصالات به صورت صلب
شبیه‌سازی شده‌اند، میزان حساسیت به دست آمده در مدل
اجزای محور بیشتر از مقدار واقعی آن را می‌باشد. دلیل این
امور لغزش اتصالات سازه در موقعیت این با تمرکز نامتقارن می‌باشد.

فرض‌ها و محدودیت‌های آنالیز گذاشته در اجرای مدل‌سازی به
شرح زیر است:

1- شرایط اولیه علوم باشند.
2- اثرات زیر درکوبی و ارتجاع در سازه وجود نداشته
باشد. معادله تغییر دینامیکی گذاری مطلوب برای یک سازه طبقی
به صورت زیر می‌باشد:

$$[M] \{\ddot{u}\} + [C] \{\dot{u}\} + [K] \{u\} = \{f(t)\}$$

$$\text{که در آن} \quad [M] \quad \text{ماتریس جرم سازه} \quad [C] \quad \text{ماتریس میرایی} \quad [K] \quad \text{ماتریس نیروهای خارجی وارد بر سیستم می‌باشد. از دو روش انتقال گیری تقابلی بی‌پیوسته و انتقال گیری نیویورک گردیده بر حسب عضو نطفی} \quad \text{می‌توان استفاده نمود. روش تقابلی بی‌پیوسته از الگوریتم‌های مشترک و بی‌پیوسته گیرندا}
$$
$$\text{دارند. از روش نیویورک گردیده بر حسب تقابل با سیستم می‌باشد. روش}
$$
$$\text{نیویورک از روابط تقابل محدود در باره زمانی} \quad \Delta \text{ب فرض}
$$
$$\text{های نیویورک می‌باشد. معادله به صورت زیر است:}

$$\begin{bmatrix}
\{u_{n+1}\} = \{u_n\} + \{(1-\delta)\{u_n\} + \delta \{u_{n+1}\}\Delta t}
\end{bmatrix}
$$

$$\text{معادلات برای} \quad \{u_{n+1}\} \quad \text{معادلات به دست آمده با استفاده از}
$$
$$\text{ترکیب معادلات} \quad (3) \quad \text{و} \quad (4) \quad \text{به معادله} \quad (2) \quad \text{به شکل زیر در آید.}

$$\begin{bmatrix}
(a_1[M] + a_2[K] + a_3[1]) \{u_{n+1}\} = \{f(t)\} +
(M[a_1(u_n + \alpha [u_{n+1}] + a_2[u_n]) + a_3[u_{n+1}] + a_4[u_n])
\end{bmatrix}
$$

$$\text{در صورت وجود اثرات غیر خطی در معادله بالا از روش نیویورک}
$$
$$\text{رافشان جهت حل معادله استفاده می‌شود. پس از اینکه حل}
$$
$$\text{برای بردار} \quad \{u_{n+1}\} \quad \text{بدست آمده، سرعت و شتاب‌ها با استفاده}
$$
$$\text{در معادله} \quad (2) \quad \text{به سیستم مبتنی‌شده}
$$
$$\alpha \geq \frac{1}{4} \left(\frac{1}{2} + \delta \right)^2, \quad \delta \geq \frac{1}{2} \quad \text{برای}
$$
$$\text{پایه‌هایی که به صورت نامکزور پایاده خواهد بود.}

$$\text{فاضل‌ماهی‌های مکانیک جامدات / پیام 1287 / سال اول / شماره اول}$$
باشد. این مورد در پیچش سازه تحت بار های نامتقارن با دامنه کم، کوچکتر از میزانی است که در حالت بارهای نامتقارن با دامنه زاید ایجاد می‌شود. میزان کاهش سختی در مواردی 10-20 درصد و در موارد بیشتری نیز 20 درصد گزارش شده است.

جدول (1) مقادیر تنش و زمان فروم آن در تحلیل دینامیکی

<table>
<thead>
<tr>
<th>نوع تحریک</th>
<th>حداقل تنش (Mpa)</th>
<th>زمان (ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیم پایه</td>
<td>255</td>
<td>0.119</td>
</tr>
<tr>
<td>سونیو</td>
<td>0.45</td>
<td>0.888</td>
</tr>
<tr>
<td>بالا ساده</td>
<td>0.45</td>
<td>0.888</td>
</tr>
<tr>
<td>منحنی</td>
<td>0.45</td>
<td>0.888</td>
</tr>
<tr>
<td>انتهای شاسی</td>
<td>0.45</td>
<td>0.888</td>
</tr>
</tbody>
</table>

۵- بررسی نتایج

در این حالت که سیستم تعیین انعطاف‌پذیری باشد، همان طور که در شکل (۷) دیابه می‌شود حداکثر جابجایی در راستای عمودی (Mpa) می‌باشد. همانطور که در قسمت انتهای آتوبوس رخ می‌دهد، در شکل (۷) کانتور تنش فرم می‌بینیم. شناسایی داده شده است و همانطور که در شکل دیده می‌شود، مقدر حداکثر تنش در این حالت قبل از اولین رام عرضی بعد از ۱۴۶ Mpa در مسیر راست شاسی مناهیده می‌شود و مقدر آن ۱۴۶ Mpa می‌باشد.

۵-۱- نتایج تحلیل استاتیکی شاسی و سازه

در آتوبوس مدل می‌تواند محاسبه شده است. شکل (۸) موهای ارتعاشی اول تا ششم شاسی و سازه را به همراه فرکانس‌های مربوط به تریکب نشان می‌دهد.

۵-۲- نتایج حاصل از تحلیل حرارتی شاسی و سازه

پس از انجام آنالیز مودال‌ها، آنالیز دینامیکی سازه و شاسی انجام گرفته است. در این مدل تحت نیم پایه سیونیو قرار گرفته است. در این حالت حداکثر تنesh با دست آمده ۲۵۵ Mpa بوده که در رام عرضی زدیگی نامک آتشک سیک خرد در زمان ۱/۱۲ ثانیه (یعنی در اواست تحریک غربه عقب) اتفاق می‌افتد. در تحریک مانند پیش‌تر، حداکثر تنش ۳۵۰ Mpa می‌باشد. که در قسمت انتهایی شاسی در زمان ۳/۸ ثانیه (یعنی در انتهای زمانی که هر عقب مست راست تحریک شده است) اتفاق می‌افتد. در تحریک بالا نیز حداکثر تنش ۷۰۶ Mpa بوده و به صورت تمرکزنش در محل دسته موتور عقیق در زمان ۲/۸ ثانیه اتفاق می‌افتد که این لحظه نیز اواست زمانی که هر عقب مست راست تحریک شده است.
شکل (۶) کانترنی در حال تحریک سینوسی چرخ جلو

شکل (۷) کانترنی جابجایی عمودی در حال تحریک سینوسی چرخ جلو

شکل (۸) کانترنی فون میزر در حال تحریک سینوسی چرخ عقب

شکل (۹) کانترنی جابجایی عمودی شاسی و سازه در زمان ۱۱۹ ثانیه

شکل (۱۰) مدل سیستم محدود سازه و شاسی

شکل (۱۱) کانترنی جابجایی عمودی سیستم تعلیق انعطاف پذیر

شکل (۱۲) کانترنی فون میزر در حال تحریک سیستم تعلیق انعطاف پذیر

شکل (۱۳) موده‌های ارتعاشی و فرکانس‌های طبیعی اول تا ششم
شکل (11) نقاط طراحی
شکل (12) نمودار سرعت نقاط طراحی در تحریک سینوسی
شکل (13) نمودار شتاب نقاط طراحی در تحریک سینوسی
شکل (14) کانترول تنش فون میژ سازه و شناسی در تحریک چاله در زمان 1/12 ثانیه
شکل (15) کانترول جابجایی عمودی سازه و شناسی در تحریک چاله در زمان 1/12 ثانیه
شکل (16) کانترول تنش فون میژ سازه و شناسی در تحریک چاله در زمان 2/8 ثانیه
شکل (17) نمودار جابجایی نقاط طراحی در تحریک سینوسی
شکل (45) 150 نمودار جابجایی نقاط طراحی در تحریک چاله در زمان 1/12 ثانیه
شکل ۱۷) کاتنور جابجایی عمودی سازه و شاسی در تحریک جاله در زمان ۲/۸۸ ثانیه

شکل ۱۸) نمودار جابجایی نقاط طراحی در تحریک جاله

شکل ۱۹) نمودار سرعت نقاط طراحی در تحریک جاله

شکل ۲۰) نمودار شتاب نقاط طراحی در تحریک جاله

[8] Dirschmid, Dr.F., Optimization of Car Components using MSC/CONSTRUCT
<table>
<thead>
<tr>
<th>Reference</th>
<th>Source</th>
</tr>
</thead>
</table>