[1] Findley W.N., A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, J. Eng. Ind., Trans ASME, Vol. 81, Issue 4, 1959, pp. 301–306.
[2] Matake T., An explanation on fatigue limit under combined stress, Bull JSME, Vol. 20, 1977, pp. 257-263.
[3] McDiarmid D.L., Fatigue under out-of-phase bending and torsion, Fatigue Engng Mater Struct, Vol. 9, Issue 6, 1987, pp. 457–475.
[4] McDiarmid D.L, A General Criterion for High Cycle Multiaxial Fatigue Failure, Fatigue and Fracture of Engineering Materials and Structures, Vol. 14, Issue 4, 1991, pp. 429-453.
[5] McDiarmid D.L., A Shear Stress Based Critical-Plane Criterion of Multiaxial fatigue for Design and Life Prediction, Fatigue and Fracture of Engineering Materials and Structures, Vol. 17, Issue 12, 1994, pp. 1475-1485.
[6] Carpinteri A., Brighentri R., Spagnoli A., A fracture plane approach in multiaxial high-cycle fatigue of metals, Fatigue Fract. Eng. Mater. Struct, Vol. 23, 2000, pp. 355-364.
[7] Carpinteri A., Spagnoli A., Multiaxial high-cycle fatigue criterion for hard metals, Int. J. Fatigue, Vol. 23, 2001, pp. 135-145.
[8] Papadopoulos IV, Davoli P, Gorla C., Filippini M., Bernasconi A., A comparative study of multiaxial high-cycle fatigue criteria for metals, Int. J. Fatigue, Vol. 19, Issue 3, 1997, pp. 219–235.
[9] Wang Y.Y., Yao W.X., Evaluation and comparison of several multiaxial fatigue criteria, Int. J. Fatigue, Vol. 26, Issue 1, 2004, pp.17-25.
[10] Shariyat M., A fatigue model developed by modification of Gough’s theory, for random non-proportional loading conditions and three dimensional stress fields, Int. J. fatigue, Vol. 30, 2008, pp. 1248-1258.
[11] Shiegly G., Mechanical engineering design. McGraw-Hill, 7th Edition, 2003.
[12] شرعیات م.، اصول طراحی و تحلیل سازه و بدنه خودرو، انتشارات دانشگاه صنعتی خواجه نصیر الدین طوسی، 1388.