تحلیل ارتعاشات آزاد پوسته استوانه‌ای دو سر گیردار با رنگ تقویت شده

بر اساس مدل ردی

مهدی سلیمانزاده 1

سید رسول موسوی فر 2

مهدی رضا عسونه‌زنیان 3

نویسندگان مسئول: ir

چکیده

در این مقاله به بررسی ارتعاشات آزاد یک پوسته استوانه‌ای ساخته شده از مواد FGM (نابایی) با رنگ تقویت شده كه ترکیبی از فولاد ضد زنگ و نیکل می باشد پرداخته می شود. خصوصیات مواد در جهت ضخامت پوسته، مطالعات مواد و توزیع کسر حجمی تغییر می کند. در این مطالعه پوسته‌های استوانه‌ای رنگ تقویت شده دارند، و این رنگها به‌طور اختیاری در طول قرار دارند. این مطالعه بر اساس تئوری مربوط به تغییر شکل پوسته انجام شده است و استخراج معادلات حركة این پوسته استوانه‌ای FGM بر اساس اصل همیلتون انجام شده است. نتایج ارائه شده در این تحقیق شامل فکانس‌های طبیعی، اثر رفرنگی کسر حجمی، اثر موقعیت رنگ تقویت شده روی پوسته و اثر شرایط FGM گیردار-گیردار روز فکانس‌های طبیعی پوسته استوانه‌ای است.

واژه‌های کلیدی: ارتعاشات مواد نابایی، پوسته استوانه‌ای، رنگ، اصل همیلتون.

1- دانشجوی دکتری مهندسی مکانیک و عضو هیات علمی دانشگاه آزاد اسلامی واحد تهرانشمال.
2- عضو هیات علمی دانشگاه آزاد اسلامی واحد شیراز.
3- عضو هیات علمی دانشگاه آزاد اسلامی واحد ایذه.
1- مقدمه

به دلیل کاربردهای وسیع پوشه‌های استوانه‌ای در طرح‌های ساختمانی در خاک، ساختمان‌های مهی و غیره، تحقیقات انجام شده در این زمینه فراوان است که هر کدام با توجه به نوع تحلیل و روش حل از یکدیگر متفاوت می‌باشد. انتخاب زمینه تحقیق با توجه به کاربرد آن در موارد مختلف صنعتی، نظامی، پزشکی و غیره است. این زمینه ها شامل حالت‌های مختلف پاهای نوار است که هر یک از آنها در مقابل عوامل گوناگون یکه بوده است. در سال‌های اخیر تحقیقات متعادل بر روی موارد تابعی انجام شده است. این موارد با توجه به پوشه‌های ساختاری منظور به‌نام مستندات، فنی‌های موجود بر دسته خواص گیردار- گیردار بر اساس تغییرات در دمای ماده ریزی مورد تحقیق می‌باشد.

2- موارد تابعی

برای یک پوشه استوانه‌ای ساخته شده از موارد تابعی خصوصیات مواد مانند محاسبه ضریب پواسون، ضریب برش E، نرخ گچی دیگری که صورت باید از رفتار کس حجمی تغییر در سطح سطحی که از سطح ثابت قرار در سطح ثابت قرار نیست، به‌نام مستندات، فنی‌های موجود بر دسته خواص گیردار- گیردار بر اساس تغییرات در دمای ماده ریزی مورد تحقیق می‌باشد.

3- روابط کرنش - جابجایی

ارتباطات آزاد پیک پوشه‌های استوانه‌ای از دیدگاه توسعه یک سطح یا لوله است. حذف از این ارتباطات پوشه استوانه‌ای از نظر کمک‌داهنده یک منبع برای رسیدن به اساس تمارک (کلاسیک) از سطح لوله و همکاران [3] مورد بررسی قرار گرفته شد. ارتباطات آزاد پیک پوشه‌های استوانه‌ای تابع با سطح مقطع پیچیده توسعه یا همکاران مورد بررسی قرار گرفت [3]. ارتباطات پوشه‌های استوانه‌ای ساخته شده از موارد تابعی توسعه لوله و همکاران مورد بحث قرار
بررسی مطابق با مدل ردی به صورت زیر انجام می‌گردد:

از طرفی چون تنها یافته‌های بررسی \(\varepsilon_{33} \) و \(\varepsilon_{22} \) در دو سطح هزینه‌ی زیر موجود می‌باشد. میدان جایگاهی با صورت زیر در می‌آید:

\[
\begin{align*}
U_i &= u_i(a_i, a_r) + a_r \phi_i(a_i, a_r) - C_i a_r^2 \left(-\frac{u_i}{R_i} + \phi + \frac{\partial u_i}{\partial a_r} \right) \\
U_r &= u_r(a_i, a_r) + a_r \phi_r(a_i, a_r) - C_i a_r^2 \left(-\frac{u_r}{R_i} + \phi + \frac{\partial u_r}{\partial a_r} \right) \\
U_\gamma &= u_\gamma (a_i, a_r)
\end{align*}
\]

که در آن \(C_i = \frac{r_i^4}{r_i^4} \) می‌باشد. با قرار دادن معادله

\[
\begin{align*}
\varepsilon_{11} &= \frac{1}{A_i \left(1 + \frac{\alpha_r}{R_i} \right)} \left[\frac{\partial U_i}{\partial a_i} + \frac{U_i}{A_i} \frac{\partial A_i}{\partial a_r} + U_\gamma \frac{A_i}{R_i} \right] \\
\varepsilon_{22} &= \frac{1}{A_i \left(1 + \frac{\alpha_r}{R_i} \right)} \left[\frac{\partial U_i}{\partial a_i} + \frac{U_i}{A_i} \frac{\partial A_i}{\partial a_r} + U_\gamma \frac{A_i}{R_i} \right] \\
\varepsilon_{33} &= \frac{\partial U_r}{\partial a_r}
\end{align*}
\]

که در آن:

\[
\begin{align*}
U_1 &= u_1(a_i, a_r) + a_r \phi_1(a_i, a_r) + a_r^T \psi_1(a_i, a_r) + a_r^T \beta_1(a_i, a_r) \\
U_r &= u_r(a_i, a_r) + a_r \phi_r(a_i, a_r) + a_r^T \psi_r(a_i, a_r) + a_r^T \beta_r(a_i, a_r) \\
U_\gamma &= u_\gamma (a_i, a_r)
\end{align*}
\]
روابط تنش-کرنش برای یک پوسته نازک به صورت زیر می‌باشد:

$$\sigma_{11} = \sigma_{22} = \frac{E}{1-\nu^2} Q_{11} \quad \text{و} \quad \sigma_{22} = Q_{22} = \frac{E}{1-\nu^2} \frac{v \nu}{1+v}$$

$$Q_{11} = Q_{22} = \frac{E}{1-\nu^2} \quad \text{و} \quad Q_{22} = Q_{33} = \frac{E}{1+v}$$

برای به دست آوردن روابط نیروهای برآمده تعریف زیر را در نظر می‌گیریم:

$$\gamma_{ij} = \int_{h/2}^{h/2} Q_{ij} \left\{ \alpha, \alpha^T, \alpha^T \right\} \, d\alpha$$

که نشانگر مؤلفه‌های ماتریس سفتی‌کنشی، مؤلفه‌های ماتریس سفتی‌کنشی، سفتی‌های کوپله‌ای، سفتی‌های درجه‌بندی، کنشی و ه şi، E ij و F ij و G ij و H ij i و j = 1, 2, 3, 4, 5, 6 است. در حالیکه h، B ij، F ij و E ij فقط برای i = 1, 2, 6 تعیین می‌شوند.

$$\begin{bmatrix} N_{11} & M_{11} & \sigma_{11} \\ N_{12} & M_{12} & \sigma_{12} \end{bmatrix} = \begin{bmatrix} k \int_h \sigma_{11} \, d\alpha \, v^T \sigma_{11} \\ k \int_h \sigma_{12} \, d\alpha \, v^T \sigma_{12} \end{bmatrix} = \begin{bmatrix} k \int_h \sigma_{11} \, d\alpha \, v^T \sigma_{11} \\ k \int_h \sigma_{12} \, d\alpha \, v^T \sigma_{12} \end{bmatrix}$$

$$\begin{bmatrix} R_{11} & P_{11} & R_{11} \\ R_{12} & P_{12} & R_{12} \end{bmatrix} = \begin{bmatrix} k \int_h \sigma_{11} \, d\alpha \, v^T \sigma_{11} \\ k \int_h \sigma_{12} \, d\alpha \, v^T \sigma_{12} \end{bmatrix}$$

$$\begin{bmatrix} R_{11} & R_{12} & Q_{11} \\ R_{12} & R_{12} & Q_{12} \end{bmatrix} = \begin{bmatrix} k \int_h \sigma_{11} \, d\alpha \, v^T \sigma_{11} \\ k \int_h \sigma_{12} \, d\alpha \, v^T \sigma_{12} \end{bmatrix}$$

شکل (1) هندسه یک پوسته استوانه‌ای با رینگ تقویت شده FGM را نشان می‌دهد.
6- معادلات حرکت برای ارتعاشات یک پوسته عامل مشترک است

برای یک پوسته استوانه (در مختصات استوانه‌ای) داریم:

\[R = a, \quad \frac{1}{R} = \theta, \quad A = a, \quad A_x = a, \quad \alpha_r = \frac{\alpha_x}{\alpha_r} \]

(38)

با جایگذاری معادله (38) در معادلات (32) نا تا (33) در معادلات (34) می‌بینیم

معادلات حرکت برای ارتعاشات یک پوسته استوانه‌ای با استفاده از نمودارهای شکل تغییر شکل بریده صحیح می‌باشد:

\[\frac{\partial N_{\gamma i}}{\partial x} + \frac{\partial N_{\gamma r}}{\partial \theta} = I_{\gamma i} \frac{\partial}{\partial x} \left(I_{\gamma r} \frac{\partial N_{\gamma i}}{\partial x} \right) + (I_{\gamma r} - C_i I_r) \frac{\partial}{\partial \theta} (\frac{\partial N_{\gamma i}}{\partial \theta}) \]

(39)

\[\frac{\partial N_{\gamma r}}{\partial x} + C_i \frac{\partial P_{\gamma r}}{\partial x} + Q_{\gamma r} - \tau C_i R_{\gamma r} + C_i P_{\gamma r} = \]

\[(I_{\gamma r} + \frac{C_i}{a} I_r + \frac{C_i^T}{a^T} I_p) \frac{\partial}{\partial x} \]

(40)

\[(I_{\gamma r} - C_i I_r + \frac{C_i^T}{a} I_p) \frac{\partial}{\partial x} \left(\frac{\partial N_{\gamma r}}{\partial x} \right) - \frac{\partial Q_{\gamma r}}{\partial x} \frac{\partial}{\partial \theta} \]

\[= C_i \frac{\partial R_{\gamma r}}{\partial \theta} + \frac{\partial Q_{\gamma r}}{\partial \theta} + \tau C_{\gamma r} \frac{\partial P_{\gamma r}}{\partial \theta} \]

(41)

\[\frac{\partial}{\partial x} I_{\gamma i} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \frac{\partial}{\partial \theta} \right) + (I_{\gamma r} - C_i I_r + \frac{C_i^T}{a} I_p) \frac{\partial}{\partial \theta} \]

\[+ \frac{\partial M_{\gamma i}}{\partial \theta} - \frac{\partial P_{\gamma r}}{\partial \theta} + \frac{\partial Q_{\gamma r}}{\partial \theta} + \tau C_i R_{\gamma r} a \]

\[= -I_{\gamma i} \frac{\partial}{\partial \theta} + C_i I_r \frac{\partial}{\partial \theta} - \frac{\partial}{\partial \theta} \]

(42)

\[I_{\gamma i} = \int_{h}^{r} \rho \frac{\partial}{\partial \theta} d\gamma \]

(43)
7- تحلیل معادلات پوشه استوانه‌ای با FGM ریگن تقویت شده

می‌توانیم معادلات حرکت این پوشه استوانه‌ای را به فرم ماتریسی درآورد:

\[
\begin{bmatrix}
\frac{u_1}{u_2} & o^\top \begin{bmatrix}
A \\
B \\
C \\
D \\
E
\end{bmatrix}
\end{bmatrix} = 0
\]

در نهایت با صفر قرار دادن دترمینان ضرایب به صورت زیر خواهیم داشت:

\[
\text{det}(C_{ij} - M_{ij} \omega^3) = 0
\]

با بسط دادن دترمینان ضرایب بر حسب \(\omega\) بدست می‌آید:

\[
\beta_1 \omega^6 + \beta_2 \omega^3 + \beta_3 \omega^3 + \beta_4 \omega^3 + \beta_5 = 0
\]

FGM با حل این معادله، به دست می‌آید، پنج ریشه‌دست و پنج ریشه لکی که ریشه‌ای منفی نیستند و از پنج ریشه منفی که کوچک‌ترین ریشه فکانس طبیعی مورد مطالعه در این تحقیق است. پوشه استوانه‌ای FGM محور بر روی شده در این تحقیق تشکیل شده از گره‌هایی در سطح داخلی و فولاد ضد زنگ در سطح خارجی پوشه است. خصوصیات مواد برای نیکل و فولاد ضد زنگ در دماهای ماشین‌کاری به دست آمده است. جدول 1 در نظر گرفته می‌شود.

| جدول 1 (خصوصیات مواد) | FGM | پوشه استوانه‌ای
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>(V)</td>
<td>(E)</td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>γ</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\phi(x) = \gamma_1 \cosh\left(\frac{\lambda_m^x}{L}\right) + \gamma_2 \cos\left(\frac{\lambda_m^x}{L}\right) - \xi_m \times
\]

\[
\left(\gamma_1 \sinh\left(\frac{\lambda_m^x}{L}\right) + \gamma_2 \sin\left(\frac{\lambda_m^x}{L}\right)\right)
\]

شیراب‌های مزیت \(\gamma_1\) و \(\gamma_2\) نیز مانند تابع محوری در پوشش زیر به صورت زیر تعیین می‌شود.
افزایش می‌یابند. این رفتار فراکسیون نشان می‌دهد که
کمترین فراکسیون برای یک پوسته استوآندای
در این جدول خواص مواد FGM می‌تواند به صورت تابعی
از دما باشد. خواص پ۱ برای مواد FGM به صورت زیر است:
\[P = P_0 \left(T - T_r \right)^{-1} + R T + P_0 T_r \] \[(50) \]
که برای دماهای بر حسب کلوین می‌توانند.

8. بحث درباره نتایج
در این مقاله به منظور آگاهی از صحت و درستی
جواب‌های به دست آمده، نتایج با دیگر تحقیقات که از
نیروی کلاسیک استفاده کرده اند مطابق با جدول (2)
بررسی و مقایسه شده است. این جدول (2) برای جدول N
عدد موج محیطی m و عدد موج طولی می‌باشد.

جدول (2) مقایسه فاکتورهای برای یک پوسته استوآندای

<table>
<thead>
<tr>
<th>m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

در این تحقیق مطالعه بر روی ارتفاعات آزاد پوسته
استوآندای FGM با رنگ‌های مختلف و کمیت شاهد شد. شرایط
(C-C) انتخاب شده در این تحقیق گیرنده-گیرنده
اصلی آناتومی شد. در شکل (3) تغییرات فراکسیونی طبیعی با عدد
موج محیطی n برای یک پوسته استوآندای FGM با رنگ‌های مختلف و
کمیت شاهد شده در جدول (2) انتخاب شده است. در این شکل فراکسیون طبیعی پوسته با عدد موج
محیطی n افزایش می‌یابد. این افزایش فراکسیون نشان می‌دهد که زمان
به‌یک‌راز از دو فراکسیون دو عدد موج محیطی n بدریج

شکل (3) تغییرات فراکسیونی طبیعی یک پوسته استوآندای
FGM با عدد موج محیطی (m) و عدد موج طولی (N)

<table>
<thead>
<tr>
<th>m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

شکل (3) تغییرات فراکسیونی طبیعی یک پوسته استوآندای
FGM با مکانیزم تغییرات فراکسیون شده در طول پوسته استوآندای
فراکسیون به‌یک‌راز از دو عدد موج محیطی n برای ایمنی و
کمیت شاهد شده است. در این روی برای ایمنی

ابعاد شش می‌باشد.

شکل (3) تغییرات فراکسیونی طبیعی یک پوسته استوآندای
FGM با عدد موج محیطی (m) و عدد موج طولی (N)

<table>
<thead>
<tr>
<th>m</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
توضیحات: منبع و رویکرد بخش‌های مختلف پژوهش

توضیحات: تغییرات فرکانس‌های طبیعی پوسته استوانتیا با لغزش FGM

شکل (4) تغییرات فرکانس‌های طبیعی پوسته استوانتیا با لغزش FGM

شکل (5) تغییرات فرکانس‌های طبیعی پوسته استوانتیا با لغزش FGM

شکل (6) تغییرات فرکانس‌های طبیعی پوسته استوانتیا با لغزش FGM

شکل (7) تغییرات فرکانس‌های طبیعی پوسته استوانتیا با لغزش FGM

پیوست

معادله A

\[
\begin{align*}
- \frac{\partial (N_{\alpha \gamma} A_{\gamma}) }{\partial \alpha_{i}} + N_{\alpha} \frac{\partial A_{\gamma} }{\partial \alpha_{i}} - \frac{\partial (N_{\gamma \alpha} A_{\gamma}) }{\partial \alpha_{i}} - \frac{Q_{\alpha \gamma}}{A_{\gamma}} A_{\gamma} A_{\gamma} - \frac{\partial}{\partial \alpha_{i}} \left(\frac{P_{\gamma \gamma} C_{\gamma} A_{\gamma} }{R_{\gamma}} \right) + \frac{P_{\gamma \gamma} C_{\gamma} A_{\gamma} }{R_{\gamma}} + \frac{\partial}{\partial \alpha_{i}} \left(\frac{C_{\gamma} R_{\gamma}}{A_{\gamma}} A_{\gamma} A_{\gamma} \right) - \frac{C_{\gamma} R_{\gamma}}{A_{\gamma}} A_{\gamma} A_{\gamma} = -(\dddot{u}_{\alpha} + \dddot{\phi}_{i} I_{\alpha}) + \left[C_{i}(- \dddot{u}_{\alpha} + \dddot{\phi}_{i} I_{\alpha}) \right].
\end{align*}
\]

معادله B

\[
\begin{align*}
\frac{\partial (N_{\alpha \gamma} A_{\gamma}) }{\partial \alpha_{i}} - N_{\alpha} \frac{\partial A_{\gamma} }{\partial \alpha_{i}} + \frac{\partial (N_{\gamma \alpha} A_{\gamma}) }{\partial \alpha_{i}} + \frac{Q_{\alpha \gamma}}{A_{\gamma}} A_{\gamma} A_{\gamma} - \frac{\partial}{\partial \alpha_{i}} \left(\frac{P_{\gamma \gamma} C_{\gamma} A_{\gamma} }{R_{\gamma}} \right) - \frac{P_{\gamma \gamma} C_{\gamma} A_{\gamma} }{R_{\gamma}} + \frac{\partial}{\partial \alpha_{i}} \left(\frac{C_{\gamma} R_{\gamma}}{A_{\gamma}} A_{\gamma} A_{\gamma} \right) - \frac{C_{\gamma} R_{\gamma}}{A_{\gamma}} A_{\gamma} A_{\gamma} = (\dddot{u}_{\alpha} + \dddot{\phi}_{i} I_{\alpha}) + \frac{C_{\gamma} R_{\gamma}}{A_{\gamma}} A_{\gamma} A_{\gamma}.
\end{align*}
\]

المعادله C

\[
\begin{align*}
- \frac{\partial (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + N_{\alpha} A_{\gamma} A_{\gamma} + \frac{\partial (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + N_{\gamma \alpha} A_{\gamma} A_{\gamma} - \frac{\partial (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + \frac{\partial \gamma (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + \frac{\partial \gamma (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + \frac{\partial \gamma (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + \frac{\partial \gamma (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} = -(\dddot{u}_{\alpha} + \dddot{\phi}_{i} I_{\alpha}) + \frac{\partial \gamma (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + \frac{\partial \gamma (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}} + \frac{\partial \gamma (P_{\gamma \gamma} C_{\gamma} / A_{\gamma}) }{\partial \alpha_{i}}.
\end{align*}
\]
\[
\frac{\partial (M_{11}A_r)}{\partial \alpha_1} + \frac{\partial (C_1P_{11}A_r)}{\partial \alpha_1} + M_{11} \frac{\partial A_r}{\partial \alpha_1} - C_1P_{11} \frac{\partial A_r}{\partial \alpha_1} - \frac{\partial (M_{11}A_r^\prime)}{\partial \alpha_1} - \frac{\partial (P_{11}C_1A_r^\prime)}{\partial \alpha_1} - \\
- \tau C_1R_{11} A_r A_r + A_r A_r Q_{11} + \frac{C_1P_{11}}{R_1} A_r A_r = \left\{ \ddot{u}_1 I_1 + \ddot{\phi}_1 I_r - C_1 \dot{u}_1 I_r + \left(-\tau C_1 \ddot{\phi}_1 + C_1 \frac{\ddot{u}_1}{R_1} \right) \right\}
\]

\[
\frac{\partial (M_{11}A_r)}{\partial \alpha_r} + \frac{\partial (C_1A_r P_{11})}{\partial \alpha_r} + M_{11} \frac{\partial A_r}{\partial \alpha_r} - C_1P_{11} \frac{\partial A_r}{\partial \alpha_r} - \frac{\partial (M_{11}A_r^\prime)}{\partial \alpha_r} - \frac{\partial (P_{11}C_1A_r^\prime)}{\partial \alpha_r} - \\
- \tau C_1 R_{11} A_r A_r + A_r A_r Q_{11} + \frac{C_1 P_{11}}{R_1} A_r A_r = \left\{ \ddot{u}_r I_1 + \ddot{\phi}_r I_r - C_1 \dot{u}_r I_r + \left(-\tau C_1 \ddot{\phi}_r + \right) \right\}
\]