[1] Leissa A.W, Kang J.H., Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses, ASME, Vol.44,issue 9,2002, pp. 1925-1945
[2] Javaheri R., Eslami M.R., Buckling of functionally graded plates under in-plane compressive loading, Zamm .Z.Angew. Math Mech, Voll. 82, issue 4, 220, 2002, pp 277-283.
[3] Ni Q.Q., Xi J, Ivamoto M, Buckling analysis of composite laminated plates with arbitrary edge supports, Composite structures, Vol. 69, 2005, pp 209-217.
[4]
on a Higher-order Deformation Theory, J. Reinforced Plastics and Composites, Vol. 28, 2009, pp 1215-1234.
[5] Najafizadeh M.M., Mahdavian M., Superposition buckling analyses of rectangular Plates Composed of Functionally Graded materials subjected to non-uniform distributed In-plane loading, Proceedings of the Institution of Mechanical Engineers - Part C: J. Mechanical Engineering Science, Vol. 224, issue 11,2010, pp.2299-2308.
[7] Ansari R., Darvizeh M., Prediction of dynamic behaviour of FGM shells under arbitrary boundary conditions, Composite Structures, Vol. 85, 2008, pp. 284–292.
[8] Hyeong K.K., Moon S. K., An analytical method for calculating vibration characteristics of PWR fuel assembly with reactor end boundary conditions using fourier series, Transactions, SMIRT16, Washington DC, 2001, paper No.1445.
]9[ لطیفی م.، فرهت نیا ف.، کدخدایی م.، کاربرد روش تبدیل استوکس در تحلیل سازههای مکانیکی، دومین کنفرانس ملی مهندسی مکانیک، دانشگاه آزاد اسلامیواحد خمینی شهر، 1388.
[10] Zhang D.G., Zhou Y.H., A theoretical analysis of FGM thin plates based on physical neutral surface, Computational Material Science, 44, 2008, pp. 716-720.
[11] Timoshenko S., Goodier J., Theory of elasticity, McGraw-Hill, New York, 1971.
Chen C.S., Hsu C.Y., Tzou G.J., , Vibration and Stability of Functionally Graded Plates Based