Numerical Determination of Delamination Onset in Laminated Symmetric DCB Specimen

Document Type: Persian

Authors

1 Professor, Composite Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, Mechanical engineering department, Iran University of Science and Technology.

2 Ph.D. Student, Composite Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, Mechanical Engineering Department, Iran University of Science and Technology

3 M.Sc. Student, Composite Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, Mechanical Engineering Department, Iran University of Science and Technology

Abstract

In this study, a novel numerical method is proposed for determination of mode-I interlaminar fracture toughness, GIc, in multi-directional (MD) double cantilever beam (DCB) specimens using fracture properties of unidirectional DCB specimens. Two factors, β and Dc are defined to minimize the undesirable effects on strain energy release rate. β describes the difference between maximum and average of SERR along the delamination front. Dc shows the bending-bending coupling of laminated composites. β and Dc factors are not independent factors because both of them affect on distribution of SERR. As a result, by 3D modeling of DCB specimen in ANSYS software, limitation of β is determined so that the fracture toughness of MD DCB specimen with 0//0 interface can be predicted from toughness of unidirectional DCB specimen. Numerical results shows that fracture toughness predicted with the proposed approach is in good agreement with available experiments in the literature for β < 20%.

Keywords


[1] Szekrenyes A.,  Delamination of composite specimens, Ph.D. dissertation, Department of Applied Mechanics, University of Technology and Economics, 2005, Budapest.

[2] Kanninen M.F.,  An augmented double cantilever beam model for studying crack propagation and arrest, International Journal of Fracture, 9, 1973, pp. 83-92.

[3] Whitney J.M., Stress analysis of the double cantilever beam specimen, Composites Science and Technology, 23, 1985,  pp. 201-219.

[4] Williams J.G., End corrections for orthotropic DCB specimens, Composites Science and Technology, 35, 1989, pp. 367-376.

[5] Kondo K., Analysis of double cantilever beam specimen, Advanced Composite Materials, 4, 1995, pp. 355-366.

 

[6] Ozdil F., Carlsson L.A., 1999, Beam analysis of angle-ply laminate DCB specimens, Composites Science and Technology, 59, 305-315.

[7] Pereira A.B., Morais A. B., Mode I interlaminar fracture of carbon/epoxy multidirectional laminates, Composites Science and Technology, 64, 2004, pp. 2261–2270.

[8] شکریه، م. م.، حیدری رارانی، م.، آیت‌الهی، م. ر.، مدلیجدیدبرایتعیینچقرمگیشکستمود I تورق درقطعه DCBبااستفادهازمدلتیرتیموشنکوبرروی بسترالاستیکدوپارامتری، هیجدهمین همایش سالانه بین‌المللی مهندسی مکانیک ایران،  ISME201، ایران، تهران، دانشگاه صنعتی شریف، 21 لغایت 23 اردیبهشت 1389.

[9] Mollón V., Bonhomme J., Viña J., Argüelles A., Theoretical and experimental analysis of carbon epoxy asymmetric DCB specimens to characterize mixed mode fracture toughness, Polymer Testing, 29, 2010, pp. 766–770.

[10] Gong X.J., Hurez A., Verchery G., On the determination of delamination toughness by using multidirectional DCB specimens, Polymer Testing, 29, 2010, pp. 658–666.

[11] Pereira A. B., Morais A. B., Mixed mode I + II interlaminar fracture of carbon/epoxy laminates, Composites: Part A39, 2008, pp. 322–333.

[12] Krueger R., The virtual crack closure technique: History, approach and applications, ICASE, NASA Langley Research Center Hampton, 2002, Virginia.

[13] Schön J., Nyman T., Blom A., Ansell H.,  A numerical and experimental investigation of delamination behavior in the DCB specimen, Composites Science and Technology, 60, 2000, pp. 173-184.

[14] Naghipour P., Bartsch M., Chernova L., Hausmann J., Voggenreiter H., Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations, Materials Science and Engineering, A ,2010 , pp. 527, 509– 517.

[15] Morais A.B., Moura M.F., Marques A.T.,
Castro  P. T., Mode-I interlaminar fracture of carbon/epoxy cross-ply composites, Composites Science and Technology, 62, 2002, pp. 679–686.

[16] Davidson B.D., Gharibian S.J.,  Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites, International Journal of Fracture, 105, 2000, pp. 343–365.

[17] Miyagawa H., Experimental determination of fracture toughness of CFRP in mode II by Raman spectroscopy, Applied Composite Materials, 8, 2001, pp. 25–41.

[18] Davidson B.D., Schapery R.A., Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen, Journal of Composite Materials, 22, 1988,
pp. 640–656.

[19] Tsai S.W., Introduction to composite materials, TECHNOMIC Publication Co. 1980.