[1] Szekrenyes A., Delamination of composite specimens, Ph.D. dissertation, Department of Applied Mechanics, University of Technology and Economics, 2005, Budapest.
[2] Kanninen M.F., An augmented double cantilever beam model for studying crack propagation and arrest, International Journal of Fracture, 9, 1973, pp. 83-92.
[3] Whitney J.M., Stress analysis of the double cantilever beam specimen, Composites Science and Technology, 23, 1985, pp. 201-219.
[4] Williams J.G., End corrections for orthotropic DCB specimens, Composites Science and Technology, 35, 1989, pp. 367-376.
[5] Kondo K., Analysis of double cantilever beam specimen, Advanced Composite Materials, 4, 1995, pp. 355-366.
[6] Ozdil F., Carlsson L.A., 1999, Beam analysis of angle-ply laminate DCB specimens, Composites Science and Technology, 59, 305-315.
[7] Pereira A.B., Morais A. B., Mode I interlaminar fracture of carbon/epoxy multidirectional laminates, Composites Science and Technology, 64, 2004, pp. 2261–2270.
[8] شکریه، م. م.، حیدری رارانی، م.، آیتالهی، م. ر.، مدلیجدیدبرایتعیینچقرمگیشکستمود I تورق درقطعه DCBبااستفادهازمدلتیرتیموشنکوبرروی بسترالاستیکدوپارامتری، هیجدهمین همایش سالانه بینالمللی مهندسی مکانیک ایران، ISME201، ایران، تهران، دانشگاه صنعتی شریف، 21 لغایت 23 اردیبهشت 1389.
[9] Mollón V., Bonhomme J., Viña J., Argüelles A., Theoretical and experimental analysis of carbon epoxy asymmetric DCB specimens to characterize mixed mode fracture toughness, Polymer Testing, 29, 2010, pp. 766–770.
[10] Gong X.J., Hurez A., Verchery G., On the determination of delamination toughness by using multidirectional DCB specimens, Polymer Testing, 29, 2010, pp. 658–666.
[11] Pereira A. B., Morais A. B., Mixed mode I + II interlaminar fracture of carbon/epoxy laminates, Composites: Part A39, 2008, pp. 322–333.
[12] Krueger R., The virtual crack closure technique: History, approach and applications, ICASE, NASA Langley Research Center Hampton, 2002, Virginia.
[13] Schön J., Nyman T., Blom A., Ansell H., A numerical and experimental investigation of delamination behavior in the DCB specimen, Composites Science and Technology, 60, 2000, pp. 173-184.
[14] Naghipour P., Bartsch M., Chernova L., Hausmann J., Voggenreiter H., Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations, Materials Science and Engineering, A ,2010 , pp. 527, 509– 517.
[15] Morais A.B., Moura M.F., Marques A.T.,
Castro P. T., Mode-I interlaminar fracture of carbon/epoxy cross-ply composites, Composites Science and Technology, 62, 2002, pp. 679–686.
[16] Davidson B.D., Gharibian S.J., Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites, International Journal of Fracture, 105, 2000, pp. 343–365.
[17] Miyagawa H., Experimental determination of fracture toughness of CFRP in mode II by Raman spectroscopy, Applied Composite Materials, 8, 2001, pp. 25–41.
[18] Davidson B.D., Schapery R.A., Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen, Journal of Composite Materials, 22, 1988,
pp. 640–656.
[19] Tsai S.W., Introduction to composite materials, TECHNOMIC Publication Co. 1980.