equicha A.A.G., Toward a theory of geometric tolerancing, Int. J. Robot. Res., 2(4): 1983,
pp. 45–59.
[2] Chase K.W., Gao J., Magleby S.P., General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments,. J. Des. Manuf. 5(4):1995, pp. 263-274.
[3] Standard ASME Dimensioning and Tolerancing: ASME Y14.5M-2009. ASME, New York .
[4] Pasupathy T.M.K., Morse E.P., Wilhelm R.G., A survey of mathematical methods for the construction of geometric tolerance zones, Trans. ASME. J. Comput. Inf. Sci. Eng., 3(2), 2003, pp.64–75.
[5] Davidson J.K., Mujezinović A., Shah J.J., A New Mathematical Model for Geometric Tolerances as Applied to Round Faces, ASME J. Mech. Des. 124 ,2002, pp. (609–621).
[6] Evans DH. Statistical tolerancing: the state of the art, Part I: Background, Journal of Quality Technology, 1974, pp.188-195.
[7] Araj S, Ermer DS., Integrated simultaneous engineering tolerancing, In: Abdelmonem AH, editor. Quality improvement techniques for manufacturing products and services, Dearborn, MI, USA: American Society of Mechanical Engineers, 1985, pp. 97-114.
[8] Movahedy M.R., Khodaygan S., Tolerance Analysis of Mechanical Assemblies with Asymmetric Tolerances., Trans. SAE J. Materials Manuf.116: 2007, pp. 44-52.
[9] Bjùrke éyvind., Computer-aided tolerancing, 2nd ed., New York, NY, USA: ASME Press, 1989.
[10] Chase K., Gai J., Magleby S.P., Sorensen C.D., Including geometric feature variations in tolerance analysis of mechanical assemblies, IIE Transactions, 1996, 28, pp. 795-807.
[11] Cvetko, Robert, Characterization of Assembly Variation Analysis Methods, M.S. thesis, Brigham Young University 1997.