Optimization of Reduction Settings and Inter-stand Tensions for Tandem Cold Mills using Genetic Algorithm

Document Type : Persian


1 Lecturer, Islamic Azad University, Khomeinishar Branch

2 Associated Professor, Faculty of Engineering, University of Shahrekord University

3 Lecturer, Islamic Azad university, Khomeinishar Branch, Ph.D. Student, Polytechnic of Milan


Cold rolling process is a complicated process which can be optimized by changing in variables and settings. This paper presents a set-up optimization system developed to calculate reductions and
inter-stand tensions for each stand of a five stand tandem cold mill. The main objective in this optimization is minimization of power consumption. First, by using the analytical method, the equations of roll force and roll torque have been determined. The Genetic algorithm has been used to find out the optimum reduction setting and inter-stand tension which minimized the power consumption in five roll stands. The results have been compared with experimental data. Finally, the influence of effective parameters such as lubricants and strength of plates is studied. The results have been shown a similar pattern in reduction setting.


[1] Von Karman Th., Beitrag zur Theorie des Walzvorganges (Contribution to the Theory of Rolling), Vortrlge der Dresdener, Tagung, Band 5, Heft 2, 1925.
 [2] Ekelund S., The Analysis of Factors Influencing Rolling Pressure and Power Consumption in the Hot Rolling of Steel, 1927, vol. 111, p. 39.
[3] Orowan, E., 1943, The calculation of Roll Pressure in Hot and Cold Flat Rolling, Proceedings of the Institution of Mechanical Engineers, Vol. 150, pp. 140-167.
[4] Bland D.R., Ford H., The calculation of roll force and torque in cold strip rolling with tensions, Proceedings of the Institution of Mechanical Engineers, 1948.
[5] Hill R., The Mathematical Theory of Plasticity, Oxford University Press, London, 1950.
[6] Stone M. D., Rolling of Thin Strip, Parts I and II, Iron Steel Engr., February. 1953, pp. 61-74; December 1956, pp. 55-76.
[7] Venkata Reddy, N. , Suryanarayana, G., A set-up model for tandem cold rolling mills, J. Mater. of  Proce. Technology, 116, 2001, pp. 269-277.
 [8] Pires C.T.A., Ferreira H.C., Salesb  R.M. , Set-up optimization for tandem cold mills: A case study, World Scientific, Brazil , 2005.
[9] Tieu A. K., Liu Y. J., Friction variation in the cold-rolling process, Tribol. Int., 37 ,2004, pp. 177–183.
 [10]Ďurovský F., Zboray L., Ferková Z., Computation of Rolling Stand Parameters by Genetic Algorithm, Acta Polytechnica Hungarica, Vol. 5, No. 2, 2008.
[11] Haijun Ch., Xinyan H., Jingming Y., Optimization of schedule with multi-objective for tandem cold rolling mill based on IAGA, Mechanic Automation And Control Engineeing Conference (MACE), 2010.   
 [12] Hitchcock J.H., Elastic Deformation of Rolls during Cold Rolling, ASME Research Publication,  p. 33, 1935,New York.
]12[ فتاحی ا.، پورسینا م. ، فرهت نیا ف. ، بهینه سازی توان مصرفی در خط نورد سرد پیوسته با الگوریتم ژنتیک، کنفرانس بین‌المللی مهندسی مکانیک، بیرجند، 1390.
]13[ اشرفی م.، خادمی زاده ح.، موسوی ح.، بهینه‌سازی نورد نامتقارن به منظور بهینه کردن نیروی نورد و حذف انحنای ورق خروجی، چهاردهمین کنفرانس بین‌المللی مهندسی مکانیک، دانشگاه صنعتی اصفهان، 1385.
[14] مشکسار، م ح، اصول مهندسی نورد، انتشارات دانشگاه شیراز، 1381 .
]15[ فتاحی ا.، بهینه سازی توان مصرفی در خط نورد سرد پیوسته با الگوریتم ژنتیک ، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد خمینی شهر، 1390.
[16] Venkata Reddy, N., Suryanarayana, G., A
set-up model for tandem cold rolling mills,
J. Mater. of  Proce. Technology, 116, 2001, pp. 269-277.
 [17] Witton P. W., Ford H., Surface friction and lubrication in cold strip rolling, Proc. of Imperial college of London, 1954.