[1] ASTM D5528. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, Annual book of ASTM standards, Vol. 15, 2007, pp. 1-12.
[2] Sriharan S., Delamination Behavior of composite, Published by Woodhead Publishing and Maney Publishing on behalf of The Institute of materials, Mainerals & Mining, CRC Press Boca Raton Boston New York Washington, (2008).
[3] Sheinman I., Kardomateas G.A., Energy release rate and stress intensity factors for delaminated composite laminates, International Journal Solids Structure, Vol. 34(4), 1997, pp. 451–9.
[4] Sela N., Ishai O., Interlaminar fracture toughness and toughening of laminated composite materials, a review Composites, Vol. 20(5), 1989, pp. 416.
[5] Barrett J.D., Foschi R.O., Mode II stress intensity factors for cracked wood beams, Engineering Fracture Mechanism, Vol. 9(3), 1977, pp. 371–387.
[6] O’Brien T.K., Characterization of delamination onset and growth in a composite laminate, .In: Reifsnider KL, editor. Damage in composite materials, American Society for Testing and Materials, ASTM STP, Vol. 775, 1982, pp. 140–167.
[7] Davies P., Casari P., Carlsson LA., Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen, Composite Science Technology, Vol. 65, 2005, pp. 295–300.
[8] Arrese A., Carbajal N, Vargas G., Mujika F., A new method for determining mode II R-curve by the End-Notched Flexure test, Engineering Fracture Mechanism, Vol. 77, 2010, pp. 51–70.
[9] Brunner AJ., Blackman BRK., Davies P., An status report on delamination resistance testing of polymer–matrix composites, Engineering Fracture Mechanism, Vol. 75, 2008, pp. 2779–2794.
[10] Blackman BRK., Kinloch AJ., Paraschi M., The determination of the mode II fracture resistance, GIIc, of structural adhesive joints: an effective crack length approach, Engineering Fracture Mechanism, Vol. 72, 2005, pp. 877–897.
[11] Miyagawa H., Chiaki S., Ikegami, K., Experimental Determination of Fracture Toughness of CFRP in Mode II by Raman Spectroscopy, Applied Composite Materials, Vol. 8, 2001, pp. 25–41.
[12] Jar P.Y.B., Dick T.M., Kuboki T., Comparison of testing methods for fibre-reinforced polymers (FRP) in resistance to in-plane sliding mode of delamination (Mode II), Journal Material Science, Vol. 40, 2005, pp. 1481–1484.
[13] Gallagher E., Kuboki T., Jar P.Y.B., Cheng J.J.R., in Proceedings CD of ANTEC, Society of Plastics Engineers, 2004.
[14] Gdoutos E.E., Pilakoutas K., Chris A., Rodopoulos., Failure Analysis of Industrial Composite Materials, McGraw-Hill Professional, 2000, pp. 553.
[15] Tsai S.W., Introduction to Composite Materials, Technomic Publishing Company, 1980.
[16] Davidson B.D., Kruger R., Konig M., Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens, Engineering Fracture Mechanism, Vol. 55, 1996, pp. 557–569.
[17] Sun C.T., Zheng S., Delamination characteristics of double-cantilever beam and end-notched flexure composite specimens, Composite Science and Technology, Vol. 56(4), 1996, pp. 451–459.
[18] Shokrieh M.M., Heidari-Rarani M., Ayatollahi M.R., Delamination R-curve as a material property of unidirectional glass/epoxy composites, Materials and Design, 2012.
[19] Chang. F.K., Chang. K.Y., A Progressive Damage Model for Laminated Composites Containing Stress Concentrations, Journal Composite Material, Vol. 21, 1987, pp. 834-855.
[21] Rybicki E.F., Kanninen M.F., A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral, Engineering Fracture Mechanics, Vol. 9, 1997, pp. 931-938.
[22] Krueger R., Goetze D., Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique: History, Approach and Applications, NASA/CR-2006-214523.
[23] De Morais AB., Pereira AB., Application of the effective crack method to mode I and mode II interlaminar fracture of carbon/epoxy unidirectional laminates, Composites Part A Vol. 38, 2007, pp. 785–794.