Prediction of Fatigue Life in Notched Specimens Using Multiaxial Fatigue Criteria

Document Type: Persian



In this research, the effects of notch shape on the fatigue strength of 2024-T3 aluminum alloy notched specimens have been studied using experimental and multiaxial fatigue analysis. For this purpose, four set of specimens with different notch shape were prepared and then fatigue tests were carried out at various cyclic longitudinal load levels. Load controlled fatigue tests of mentioned specimens have been conducted on a 250kN servo-hydraulic Amsler H250 fatigue testing machine with the frequency of 10Hz. A nonlinear finite element ANSYS code was used to obtain stress and strain distribution in the specimens due to the longitudinal applied loads for all kinds of specimens. Estimation fatigue lives of the specimens were carried out with several different multiaxial fatigue criteria by means of local stress and strain distribution obtained from finite element analysis, i.e. KBM, FS, Crossland, VF and WY, by means of local stress and strain values obtained from finite element simulations. Results obtained from the multiaxial analysis revealed that among the applied criteria, the Crossland’s criterion has the best accuracy for all types of the specimens.


[1] Fatemi A.T., Zeng Z., Plaseied A., Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels, International Journal of Fatigue, Vol. 26, 2004, pp. 663–72.

[2] Medekshas H., Balina V., Assessment of low cycle fatigue strength of notched components. Materials and Design, Vol. 27, 2006, pp.132–140.

[3] Berto F., Lazzarin P., Marangon C., Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading, Materials and Design, 54, 2014, pp. 57-66.

[4] Abazadeh B., Chakherlou T.N., Farrahi G.H., Alderliesten R.C., Fatigue life estimation of bolt clamped and interference fitted-bolt clamped double shear lap joints using multiaxial fatigue criteria, Materials and Design, 43, 2013, pp. 327-336.

[5] Esmaeili F., Hassanifard S., Zehsaz M., Fatigue Life Prediction of Notched Specimens using the Volumetric Approach, Journal of Solid Mechanics and Materials Engineering, 5, 2011, pp. 508-518.

[6] حسنی فرد، سوران، زهساز، محمد، اسماعیلی گلدرق، فیروز، تأثیر فاصله بین صفحات بر روی عمر خستگی اتصالات نقطه­جوش آلیاژ آلومینیوم 5083-0، روشهای عددی در مهندسی، شماره اول،1392، صفحه 15-25.

 [7] Esmaeili F., Chakherlou T.N., Zehsaz M., Prediction of fatigue life in aircraft double lap bolted joints using several multiaxial fatigue criteria, Materials & Design, 59, 2014, pp. 430-438.

 [8] Crossland B., Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In: Proceedings of the international conference on fatigue of metals. London: Institution of Mechanical Engineers,1956, pp. 138–49.

[9] Brown M.W., Miller KJ., A theory for fatigue failure under multiaxial stress–strain conditions, Process Instruction of Mechanical Engineering, Vol. 187, 1973, pp. 745–55.

[10] Fatemi A., Socie DF., Critical plane approach to multiaxial fatigue damage including out-of-phase loading,Fatigue & Fracture of Engineering Materials &Structures, Vol. 11, 1988, pp. 149–65.

[11] Li J., Zhang ZP., Sun Q., A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings, International Journal of Fatigue, Vol. 31, 2009,  pp. 776–781.

[12] Wang CH., Brown MW., A path-independent parameter for fatigue under proportional and non-proportional loading, Fatigue & Fracture of Engineering Materials & Structures, Vol. 16, 1993,  pp.1285–1298.

[13] Smith RN., Watson P., Topper TH., A stress strain function for the fatigue of metal,  J Mater, Vol. 5, 1970, pp. 767–778.

[14] Glinka G., Shen G., Plumtree A., A Multiaxial Fatigue Strain Energy Density Parameter Related to the Critical Plane, Fatigue and Fracture of Engineering Materials and Structure, Vol. 18, 1995, pp. 37-46.

[15] Varvani-Farahani A., A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of phase multiaxial fatigue loading conditions, International Journal of Fatigue, Vol. 22, 2000, pp. 295–305.

[16] Socie D.F., Multiaxial fatigue damage models, Journal of Engineering Materials and Technology, Vol. 109, 1987, pp. 293-298.

[17] Liu K.C., A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue, Advances in Multiaxial Fatigue, ASTM STP 1191, D. L. McDowell and R. Ellis Eds., American Society for Testing and Materials, Philadelphia, 1993, pp. 67-84.

[19] Wang Y.Y., Yao W.X., Evaluation and comparison of several multiaxial fatigue criteria, International Journal of Fatigue, Vol. 26, 2004, pp. 17–25.

 [20] Varvani-Farahani A., Kodric T., Ghahramani A., A method of fatigue life prediction in notched and un-notched components, Journal of Materials Processing Technology, Vol. 169, 2005, pp. 94–102.

[21] قاجار، رحمت­الله، پیمان، صفا، علیزاده کاکلر، جواد، ارائه یک مدل کرنش پایه بهبود یافته برای محاسبه عمر خستگی چندمحوری فلزات، مهندسی مکانیک جامدات ، شماره اول،1390، صفحه 17-25.

[22] Kandil F.A., Brown M.W., Miller K.J., Biaxial low cycle fatigue fracture of 316 stainless steelat elevated temperatures,The Metal Society of London, Vol. 280, 1982, pp. 203–210.

 [23] Jahed H., Varvani-Farahani A., Upper and lower fatigue life limits model using energy-based fatigue properties, International Journal of Fatigue,Vol. 28, 2006, pp. 467-473.